ANALISIS PEMILIHAN TRANSPORTASI KAMPUS
YANG OPTIMAL DARI TEMPAT TINGGAL
MENUJU UNS DENGAN METODE
ANALYTIC HIERARCHY PROCESS

oleh
ARRINE YUNIDHA NUGRAHENI
NIM. M 0106006

SKRIPSI
ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar
Sarjana Sains Matematika

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS SEBELAS MARET SURAKARTA
2010
TUGAS AKHIR

ANALISIS PEMILIHAN TRANSPORTASI KAMPUS YANG OPTIMAL DARI TEMPAT TINGGAL MENUJU UNS DENGAN METODE ANALYTIC HIERARCHY PROCESS

yang disiapkan dan disusun oleh

ARRINE YUNIDHA NUGRAHENI

NIM. M 0106006
dibimbing oleh

Pembimbing I Pembimbing II

NIP. 19610112 198811 2 001 NIP. 19611224 199203 1 003
telah dipertahankan di depan Dewan Penguji
pada hari Senin, tanggal 6 September 2010
dan dinyatakan telah memenuhi syarat.

Anngota Tim Penguji Tanda Tangan

1. Dr. Sutanto, DEA 1.
NIP. 19710302 199603 1 001
2. Drs. Tri Atmojo K., M.Sc., Ph.D. 2.
NIP. 19630826 198803 1 002
3. Winita Sulandari, M.Si. 3.
NIP. 19780814 200501 2 002

Disahkan oleh

Fakultas Matematika dan Ilmu Pengetahuan Alam

Dekan, Ketua Jurusan Matematika,

Prof. Drs. Sutarno, M.Sc., Ph.D. Drs. Sutrima, M.Si.
NIP. 19600809 198612 1 001 NIP. 19661007 199302 1 001
PERSEMBAHAN

Karya ini kupersembahkan kepada

1. Mama dan Papa yang selalu mendukung setiap langkahku,

2. keluarga besar Moelyono yang selalu memberikan keceriaan dalam hidupku,

3. Ratna, Inggit, Anggita, Emon, Bimbi, Tutuk, Chome, Hanifah, dan Dyah yang telah menjadi sahabat dalam suka maupun duka.
ABSTRAK

Berbagai fasilitas pribadi maupun umum dapat dimanfaatkan sebagai sarana transportasi, seperti sepeda motor, mobil, angkutan umum, dan sebagainya. Begitu pula yang terjadi di Universitas Sebelas Maret (UNS) Surakarta. Seseorang yang termasuk dalam komunitas UNS biasanya memerlukan alat transportasi yang digunakan untuk berkendara ke kampus.

Pemilihan sarana transportasi kampus ikut mempengaruhi keoptimalan fasilitas kampus. Oleh karena itu, perlu dilakukan analisis sarana transportasi mana yang paling dominan sehingga pihak universitas dapat mengoptimalkan fasilitas pendukung transportasi kampus tersebut. Untuk menentukan transportasi yang paling optimal digunakan dari tempat tinggal menuju kampus UNS dapat digunakan metode analytic hierarchy process (AHP).

Prinsip kerja AHP adalah menyederhanakan masalah kompleks yang tidak terstruktur menjadi bagian-bagiannya dan menyusun variabel dalam suatu hierarki. Dari analisis dengan metode AHP diperoleh alat transportasi yang optimal digunakan untuk berkendara ke kampus adalah jalan kaki.
ABSTRACT

Arrine Yunidha Nugraheni, 2010. THE ANALYSIS OF OPTIMAL TRANSPORTATION SELECTION FROM RESIDENCE TO UNS USING ANALYTIC HIERARCHY PROCESS. Faculty of Mathematics and Natural Sciences, Sebelas Maret University.

Various public and private facilities can be utilized as transportation facilities, such as motorcycles, cars, public transportation, and so forth. Either do happen in Sebelas Maret University (UNS) Surakarta. Someone who included in UNS communities usually requires the transportation used to drive to the campus.

The selection of campus transportation influences the optimization of campus facilities. Therefore, we need to analyze the most dominant transportation so that the university and government can optimize the facilities to support campus transportation. We can use analytic hierarchy process (AHP) to determine the optimal transportation used from residence to UNS.

The working principle of AHP is to simplify complex problems that are not structured into sections and to arrange the variables in a hierarchy. From AHP analysis we obtain the optimal transportation used to drive to campus is on foot.
KATA PENGANTAR

Puji syukur penulis ucapkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Laporan Tugas Akhir ini. Selain itu, penulis ingin mengucapkan terima kasih kepada seluruh pihak yang telah membantu penulis menyusun Laporan Tugas Akhir ini.

1. Ibu Dra. Diari Indriati, M.Si. selaku Dosen Pembimbing I dan Bapak Drs. Sugiyanto M.Si. selaku Dosen Pembimbing II yang telah memberikan bimbingan kepada penulis dalam menyusun Laporan Tugas Akhir ini.

2. Ibu Winita Sulandari, M.Si. yang telah memberikan saran dan masukan dalam penulisan Laporan Tugas Akhir ini.

3. Raditya Wicaksanang atas saran, masukan, dan kerja samanya selama ini.

4. Choiril, Tesa, Ratna, dan Retno TV atas dukungan dan semangatnya.

Semoga Laporan Tugas Akhir ini bermanfaat untuk seluruh pihak.

Surakarta, 6 September 2010

Penulis
DAFTAR ISI

PENGESAHAN .. ii
PERSEMBAHAN .. iii
ABSTRAK ... iv
ABSTRACT ... v
KATA PENGANTAR ... vi
DAFTAR ISI .. vii
DAFTAR TABEL .. ix
DAFTAR GAMBAR .. x

I PENDAHULUAN 1
 1.1 Latar Belakang Masalah 1
 1.2 Perumusan Masalah 3
 1.3 Batasan Masalah .. 3
 1.4 Tujuan ... 3
 1.5 Manfaat ... 4

II LANDASAN TEORI .. 5
 2.1 Tinjauan Pustaka .. 5
 2.1.1 Penyusunan Hirarki Masalah 5
 2.1.2 Matriks Perbandingan Berpasangan 7
 2.1.3 Rata-rata Geometrik 10
 2.1.4 Konsistensi Logis 11
 2.1.5 Sintesis Penilaian 11
 2.2 Kerangka Pemikiran 12
III METODE PENELITIAN

IV PEMBAHASAN

4.1 Penyusunan Hirarki Masalah .. 14
4.2 Matriks Perbandingan Berpasangan dan Nilai Prioritas 16
4.3 Konsistensi Logis .. 21
4.4 Sintesis Penilaian .. 23

V PENUTUP

5.1 Kesimpulan .. 25
5.2 Saran ... 25

DAFTAR PUSTAKA ... 26

LAMPIRAN ... 28
DAFTAR TABEL

2.1 Nilai mutlak skala fundamental penentuan prioritas 8
2.2 Ratio Index (RI) .. 11

4.1 Nilai perbandingan berpasangan antar kriteria 16
4.2 Matriks perbandingan berpasangan antar kriteria 17
4.3 Nilai perbandingan berpasangan antar subkriteria 17
4.4 Matriks perbandingan berpasangan antar subkriteria dalam kriteria efisiensi ... 18
4.5 Matriks perbandingan berpasangan antar subkriteria dalam kriteria utilitas ... 18
4.6 Matriks perbandingan berpasangan antar subkriteria dalam kriteria sekuritas .. 18
4.7 Matriks perbandingan berpasangan antar subkriteria dalam kriteria benefit .. 19
4.8 Nilai perbandingan berpasangan antara alternatif terhadap sub-kriteria waktu .. 19
4.9 Matriks perbandingan berpasangan antara alternatif terhadap sub-kriteria waktu .. 20
4.10 Bobot kriteria dan nilai prioritas antar kriteria 20
4.11 Bobot dan nilai prioritas subkriteria terhadap efisiensi 21
4.12 Nilai konsistensi matriks perbandingan berpasangan 22
4.13 Bobot keseluruhan pemilihan transportasi kampus yang optimal . 24
DAFTAR GAMBAR

2.1 Struktur hirarki masalah 7

4.1 Struktur hirarki pemilihan transportasi kampus yang optimal . . 15
BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Berbagai fasilitas pribadi maupun umum dapat dimanfaatkan sebagai alat transportasi, seperti sepeda motor, mobil, angkutan umum, dan sebagainya. Pemilihan sarana transportasi ini dipengaruhi oleh alasan individu masing-masing sebagai faktor utama. Alasan ketepatan waktu dan penghematan biaya merupakan faktor yang biasanya dipilih seseorang dalam menentukan sarana transportasi yang digunakan. Akan tetapi pada kenyataannya terdapat berbagai macam alasan yang mendukung seseorang dalam menentukan sarana transportasi yang ingin digunakan.

Universitas Sebelas Maret (UNS) merupakan perguruan tinggi negeri di Surakarta yang terletak di ujung timur kota Surakarta. Seseorang yang termasuk dalam komunitas UNS biasanya memerlukan alat transportasi yang digunakan untuk berkendara ke kampus. Adapun jenis transportasi yang biasa digunakan oleh komunitas kampus meliputi mobil, sepeda motor, angkutan umum, dan jalan kaki. Hal ini dapat memicu masalah baru karena pemilihan jenis transportasi kampus ikut mempengaruhi keoptimalan fasilitas kampus, seperti lahan parkir, trotoar bagi pejalan kaki, dan beberapa fasilitas lain yang mendukung transportasi kampus. Oleh karena itu, perlu dilakukan analisis jenis transportasi mana yang paling dominan sehingga pihak universitas dapat mengoptimalkan fasilitas pendukung transportasi kampus tersebut.

Faktor-faktor yang mempengaruhi komunitas kampus dalam memilih sarana transportasi kampus perlu ditentukan. Adapun dalam penentuannya mengacu kepada alasan-alasan komunitas UNS dalam memilih sarana transportasi dari tempat tinggal menuju kampus. Dalam penelitian ini, faktor-faktor yang mem-
pengaruh komunitas kampus dalam memilih sarana transportasi adalah efisien-
si, utilitas, sekuritas, dan benefit. Mengacu pada penelitian Teknomo [15], untuk
menganalisis faktor yang paling mempengaruhi komunitas kampus dalam memilih
sarana transportasi kampus dapat digunakan metode analytic hierarchy process
(AHP).

Metode ini ditemukan oleh Thomas L. Saaty [8]. Pada metode AHP faktor-
faktor yang mempengaruhi komunitas kampus dalam memilih sarana transportasi
disebut sebagai kriteria. Menurut Iryanto [5], metode AHP merupakan salah satu
metode pengambilan keputusan multi kriteria yang menggunakan faktor-faktor
logika, intuisi, pengalaman, pengetahuan, emosi, dan rasa untuk mendapatkan
hasil yang optimal dalam suatu proses yang sistematis. Metode ini menggunakan
perbandingan berpasangan yang mampu membandingkan dua hal yang berbe-
da dan mampu menilai data kuantitatif maupun kualitatif. Menurut Susila dan
Munadi [13], AHP merupakan salah satu metode untuk membantu menyusun
suatu prioritas dari berbagai pilihan dengan multi kriteria. Karena sifatnya yang
multi kriteria, AHP cukup banyak digunakan dalam penyusunan prioritas. Se-
bagai contoh seperti yang pernah dikemukakan oleh Chauhan et al. [3] dalam
penelitiannya tentang sistem pengambilan keputusan dalam sektor perumahan.

Berdasarkan penjelasan Pearson [8], prinsip kerja AHP adalah menyeder-
hanakan masalah kompleks yang tidak terstruktur menjadi bagian-bagiannya dan
menyusun variabel dalam suatu hirarki. Kemudian tingkat kepentingan variabel
diberi nilai numerik secara subyektif tentang arti pentingnya secara relatif diban-
dingkan dengan variabel lain. Dari berbagai pertimbangan tersebut kemudian di-
lakukan sintesis untuk menetapkan variabel yang memiliki prioritas tertinggi dan
berperan dalam mempengaruhi hasil. Keistimewaan model AHP yaitu memakai
persepsi manusia sebagai input utamanya. Adapun pihak yang dapat melakukan
proses pengambilan keputusan menurut Saaty meliputi pengambil keputusan itu
sendiri, pemimpin suatu instansi, pakar, dan orang yang terlibat serta memahami

Pada penelitian yang dilakukan oleh Teknomo [15], tujuan akhir yang ingin
dicapai adalah menurunkan kebutuhan akan lahan parkir dengan mengalihkan penggunaan kendaraan pribadi, sedangkan dalam penelitian ini ingin dianalisis jenis transportasi yang paling optimal digunakan dari tempat tinggal menuju UNS sehingga dapat diambil suatu kebijakan menyangkut jenis transportasi tersebut.

1.2 Perumusan Masalah

Dari hal-hal yang telah diberikan dalam latar belakang masalah, perumusan masalah dalam penelitian ini adalah bagaimana menyusun kriteria masalah ke dalam suatu hirarki masalah dan menentukan transportasi kampus yang optimal dari tempat tinggal menuju UNS berdasarkan kriteria masalah dengan metode AHP.

1.3 Batasan Masalah

Penulisan Laporan Tugas akhir ini dibatasi pada

1. jarak antara kampus dengan tempat tinggal kurang dari tiga kilometer,

2. jenis transportasi yang dominan digunakan oleh komunitas kampus UNS adalah mobil, sepeda motor, jalan kaki, kendaraan umum yang dilanjutkan ojek, dan kendaraan umum yang dilanjutkan dengan jalan kaki,

3. pengambil keputusan meliputi peneliti yang terdiri dari dua orang sebagai orang yang memahami permasalahan yang terjadi dengan pengamatan secara langsung.

1.4 Tujuan

Penulisan Laporan Tugas Akhir ini bertujuan untuk menyusun kriteria masalah ke dalam suatu hirarki masalah dan menentukan transportasi kampus yang optimal dari tempat tinggal menuju UNS berdasarkan kriteria masalah dengan metode AHP.
1.5 Manfaat

Laporan Tugas Akhir ini diharapkan dapat memberi kontribusi kepada komunitas UNS dalam memilih jenis transportasi dari tempat tinggal menuju kampus. Adapun hasil dari penelitian dapat dijadikan rujukan kepada pihak universitas dan pemerintah untuk meningkatkan fasilitas transportasi yang mendukung sarana transportasi yang berkaitan. Dalam laporan ini turut mengenalkan dan mengaplikasikan metode AHP dalam lingkup matematika.
BAB II

LANDASAN TEORI

Pada bab ini akan diberikan teori dan definisi yang mendukung penulis mencapai tujuan penelitian. Berikut merupakan gambaran singkat mengenai prosedur AHP, penyusunan hierarki masalah, matriks perbandingan berpasangan, dan konsistensi logis.

2.1 Tinjauan Pustaka

2.1.1 Penyusunan Hirarki Masalah

2. Membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu yang disajikan dalam bentuk matriks perbandingan berpasangan (comparative judgement).

3. Menggunakan prioritas yang diperoleh dari perbandingan untuk melakukan pembobotan pada tingkat di bawahnya (synthesis of priority).

Mengkonstruksikan masalah pengambilan keputusan ke dalam sebuah hirar-ki merupakan hal yang fundamental dalam proses AHP [9]. Hirarki menunjukkan hubungan di antara elemen-elemen dalam suatu tingkat dengan elemen-elemen pada tingkat yang lain. Dalam proses penyusunannya, tujuan, kriteria, dan alternatif yang bersangkutan harus tepat untuk persoalan yang dihadapi. Pemilihan kriteria pada setiap masalah perlu memperhatikan empat hal sebagai berikut [16].

1. Lengkap. Kriteria harus mencakup semua aspek penting yang digunakan dalam pengambilan keputusan.

2. Operasional. Setiap kriteria harus dapat diukur dan dianalisis baik secara kualititif maupun kuantitatif.

2.1.2 Matriks Perbandingan Berpasangan

Menurut Taha [14], bagian paling penting metode AHP adalah penentuan bobot relatif untuk meranking alternatif keputusan. Pada dasarnya formulasi matematis pada model AHP dilakukan dengan menggunakan matriks. Apabila di dalam suatu sistem operasi terdapat \(n \) elemen yang akan dinilai kepentingannya secara berpasangan yaitu \(C_1, C_2, \ldots, C_n \) sebagai himpunan elemennya, maka nilai perbandingan berpasangan antara \(C_i \) dengan \(C_j \) direpresentasikan dalam matriks perbandingan berpasangan \(A \) dengan ukuran \(n \times n \)

\[
A = (a_{ij}) \text{ dengan } i, j = 1, 2, \ldots, n.
\]

Berdasarkan Saaty [10], pemasukan nilai \(a_{ij} \) mengikuti aturan berikut.

1. Jika \(a_{ij} = a \), maka \(a_{ji} = 1/a \) (\(a > 0 \)).
Tabel 2.1. Nilai mutlak skala fundamental penentuan prioritas

<table>
<thead>
<tr>
<th>Skala Nilai</th>
<th>Definisi</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sama pentingnya</td>
<td>Kedua elemen memberikan kontribusi yang sama pada sifat itu</td>
</tr>
<tr>
<td>2</td>
<td>Lemah atau tipis</td>
<td>Pengalaman dan penilaian sedikit memilih satu elemen atas yang lain</td>
</tr>
<tr>
<td>3</td>
<td>Sedikit penting</td>
<td>Pengalaman dan penilaian lebih memilih satu elemen atas yang lain</td>
</tr>
<tr>
<td>4</td>
<td>Sedikit lebih penting</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kuat pentingnya</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lebih kuat</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sangat kuat pentingnya</td>
<td>Satu elemen sangat penting dari yang lainnya</td>
</tr>
<tr>
<td>8</td>
<td>Sangat, sangat kuat</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mutlak pentingnya</td>
<td>Satu elemen memiliki tingkat penegasan tertinggi</td>
</tr>
</tbody>
</table>

Kebalikan:

\[a_{ij} = 1/a_{ji} \]

Jika elemen \(i \) mendapatkan suatu angka bila dibandingkan dengan elemen \(j \), maka \(j \) mempunyai nilai kebalikan jika dibandingkan dengan \(i \)

1.1-1.9 Jika kedua elemen yang dibandingkan sangat dekat pentingnya

Kedua elemen sangat sulit dibandingkan tetapi masih dapat mengindikasikan kepentingannya

2. Jika \(C_i \) mempunyai tingkat kepentingan relatif yang sama dengan \(C_j \), maka

\[a_{ij} = a_{ji} = 1. \]

3. Hal yang khusus adalah \(a_{ii} = 1 \) untuk semua \(i \).
Dengan demikian, bentuk matriks A menjadi
\[
A = \begin{pmatrix}
1 & a_{12} & \cdots & a_{1n} \\
1/a_{12} & 1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
1/a_{1n} & 1/a_{2n} & \cdots & 1
\end{pmatrix}.
\] (2.1)

Kartaman et al. [6] menyatakan bahwa jika telah didapat hasil penilaian berpasangan (C_i, C_j), maka selanjutnya akan ditentukan bobot pengaruh w_1, w_2, \ldots, w_n yang menggambarkan hasil penilaian. Untuk menentukan bobot pengaruh w_i diasumsikan bahwa penilaian didasarkan atas hasil pengukuran eksak. Untuk membandingkan C_i dengan C_j diambil patokan dari bobot pengaruh tiap komponen. Dalam hasil eksak, hubungan antara bobot pengaruh w_i dengan hasil penilaian a_{ij} adalah
\[
w_i/w_j = a_{ij} \text{ dengan } i, j = 1, 2, \ldots, n.
\] (2.2)

Oleh karena itu, persamaan (2.1) dapat dinyatakan sebagai
\[
A = \begin{pmatrix}
1 & w_1/w_2 & \cdots & w_1/w_n \\
w_2/w_1 & 1 & \cdots & w_2/w_n \\
\vdots & \vdots & \ddots & \vdots \\
w_n/w_1 & w_n/w_2 & \cdots & 1
\end{pmatrix}.
\] (2.3)

Dari persamaan (2.2) dan (2.3), diperoleh dua hubungan sebagai berikut.

1. Untuk $a_{ij}a_{jk} = (w_i/w_j)(w_j/w_k) = w_i/w_k = a_{ik}$, bentuk ini menyatakan bahwa konsistensi penilaian dari elemen matriks harus dipenuhi.

2. Untuk $a_{ji} = w_j/w_i = 1/(w_i/w_j) = 1/a_{ij}$, persamaan ini menunjukkan ciri berkebalikan matriks dalam AHP.

Kemudian dengan manipulasi matematika diperoleh
\[
\sum_{j=1}^{n} a_{ij}w_j = nw_i
\] (2.4)

Jika persamaan (2.4) dibawa ke bentuk matriks, maka menghasilkan
\[
AW = nW
\] (2.5)

9
Variabel n pada persamaan (2.5) secara umum dapat dituliskan dengan λ menjadi

\[AW = \lambda_i W; \quad i = 1, \ldots, n. \] (2.6)

Dalam teori tentang matriks, persamaan (2.6) menyatakan bahwa W adalah vektor eigen dari matriks A dengan nilai eigen λ. Menurut Cullen [4], bentuk $AW = \lambda W$ setara dengan $\lambda IW = AW$ atau dengan $(\lambda I - A)W = 0$. Persamaan terakhir ini mempunyai solusi tidak nol jika dan hanya jika $det(\lambda I - A) = 0$, dengan kata lain matriks $(\lambda I - A)$ adalah singular. Skalar λ adalah nilai eigen bagi A dan W adalah vektor eigennya jika dan hanya jika $det(\lambda I - A) = 0$.

Untuk mendapatkan vektor bobot W, persamaan $AW = \lambda W$ harus diselesaikan dengan mengganti nilai λ dengan λ_{maks}, dimana nilai λ_{maks} diperoleh dari

\[\lambda_{maks} = w_i \sum_{j=1}^{n} a_{ij} w_j \text{ dengan } i = 1, 2, \ldots, n. \] (2.7)

Kemudian λ_{maks} disubstitusikan ke dalam matriks A dan dilakukan perkalian matriks A dengan W yang menghasilkan beberapa persamaan yang akan diuraikan lagi, sehingga diperoleh nilai w_1, w_2, \ldots, w_n. Nilai w_i merupakan vektor eigen yang bersesuaian dengan λ_{maks}.

2.1.3 Rata-rata Geometrik

\[a_{ij} = (Z_1Z_2\ldots Z_n)^{1/n}; \quad i = 1, 2, \ldots, n, \] (2.8)
dimana

$a_{ij} = \text{nilai perbandingan berpasangan } C_i \text{ dengan } C_j \text{ untuk } n \text{ partisipan},$

$Z_i = \text{nilai perbandingan berpasangan } C_i \text{ dengan } C_j \text{ untuk partisipan ke } -i,$

$n = \text{jumlah partisipan}.$
2.1.4 Konsistensi Logis

Perubahan kecil a_{ij} menyebabkan perubahan λ_{maks}. Oleh karena itu matriks perbandingan berpasangan menjadi tidak konsisten. Hal ini terjadi karena ketidakkonsistennan preferensi seseorang (partisipan) dalam memberikan penilaian. Penyimpangan λ_{maks} dari n merupakan ukuran konsistensi [7]. Untuk mengukur konsistensi penilaian digunakan

$$CI(\text{Indeks Konsistensi}) = \frac{\lambda_{maks} - n}{n - 1},$$

$$CR(\text{Rasio Konsistensi}) = \frac{CI}{RI},$$

dimana nilai RI diperoleh dari Tabel 2.2 [10].

<table>
<thead>
<tr>
<th>Orde Matriks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>0,00</td>
<td>0,00</td>
<td>0,52</td>
<td>0,89</td>
<td>1,11</td>
<td>1,25</td>
<td>1,35</td>
<td>1,40</td>
<td>1,45</td>
<td>1,49</td>
</tr>
</tbody>
</table>

Menurut Brodjonegoro dan Utama [2], batasan diterima atau tidaknya konsistensi suatu matriks tidak ada yang baku. Namun, tingkat inkonsistensi sebesar kurang dari 10% adalah tingkat inkonsistensi yang masih dapat diterima. Jika lebih dari 10%, maka harus ada revisi penilaian karena tingkat inkonsistensi yang terlalu besar dapat menurut pesan kesalahan.

2.1.5 Sintesis Penilaian

$$p_i = \sum_{j=1}^{n} v_i b_j,$$

dimana

- $p_i = \text{prioritas final alternatif ke}-i,$
\[v_i = \text{nilai prioritas baris ke}-i, \]
\[b_j = \text{bobot relatif kolom ke}-j. \]

2.2 Kerangka Pemikiran

Berdasarkan penjelasan dalam tinjauan pustaka, dapat disusun kerangka pemikiran sebagai berikut. Dalam kasus analisis pemilihan transportasi kampus dari tempat tinggal menuju UNS, terlebih dahulu diidentifikasi tujuan dan target masalah. Selanjutnya menentukan batasan masalah agar masalah yang dibahas tidak terlalu luas. Hal yang mendasar yaitu menganalisis faktor-faktor yang mempengaruhi mahasiswa memilih sarana transportasi. Faktor-faktor tersebut dapat diklasifikasikan menjadi kriteria dan subkriteria.

Hal selanjutnya yang dilakukan adalah menentukan bobot matriks perbandingan berpasangan dengan menentukan nilai eigen dan vektor eigennya. Untuk mengecek kekonsistenan matriks, perlu dilakukan perhitungan derajat konsisten. Jika rasio konsistensi kurang dari 10\%, maka matriks konsisten sehingga secara langsung dapat ditentukan keputusan yang optimal sesuai dengan perhitungan.
BAB III

METODE PENELITIAN

Metode yang diterapkan dalam penelitian ini adalah studi literatur dan studi kasus. Adapun langkah-langkah yang dilakukan dalam penelitian ini meliputi mengkaji jurnal dan kasus nyata yang dapat diuraikan sebagai berikut.

1. Mengamati suatu permasalahan yang timbul di suatu lingkup tertentu. Dalam penelitian ini, permasalahan yang diambil mengenai pemilihan transportasi kampus yang optimal digunakan oleh komunitas UNS.

2. Menentukan batasan masalah untuk menetapkan faktor-faktor yang dapat mempengaruhi pengambilan keputusan. Faktor-faktor dalam penelitian ini adalah efisiensi, utilitas, sekuritas, dan benefit.

3. Menyusun hirarki masalah yang meliputi tujuan, kriteria, subkriteria, dan alternatif yang dijelaskan pada Bab IV.

4. Menentukan pengaruh kriteria terhadap alternatif dengan memberikan skala fundamental penentuan prioritas seperti pada Tabel 2.1.

5. Menyusun matriks perbandingan berpasangan berdasarkan persamaan (2.1.2).

6. Melakukan pengecekan konsistensi logis matriks perbandingan berpasangan sesuai dengan persamaan (2.9).

7. Menentukan bobot relatif dan vektor prioritas kriteria, subkriteria, dan alternatif.

8. Menentukan keputusan yang optimal dari analisis dengan metode AHP. Keputusan optimal dalam penelitian ini adalah transportasi kampus yang optimal digunakan dari tempat tinggal menuju UNS.
BAB IV

PEMBAHASAN

4.1 Penyusunan Hirarki Masalah

Pada bagian ini, masalah transportasi yang terjadi di UNS disusun dalam suatu hirarki yang mempertimbangkan faktor-faktor yang berpengaruh dalam pengambilan keputusan transportasi yang paling optimal digunakan di UNS. Penentuan faktor-faktor tersebut didasarkan pada keadaan riil yang terjadi di kehidupan nyata yang diperoleh dengan hasil pengamatan secara langsung. Di dalam penyusunan hirarki, faktor-faktor yang berpengaruh terhadap tujuan masalah disebut dengan kriteria yang terletak pada tingkat kedua setelah tujuan masalah.

Dalam penelitian ini, kriteria dikelompokkan menjadi 4, yaitu efisiensi (E), utilitas (U), sekeritas (S), dan benefit (B). Dari masing-masing kriteria dibagi lagi menjadi beberapa subkriteria. Untuk kriteria efisiensi dibagi menjadi subkriteria waktu (E_1) dan biaya (E_2). Kondisi jalan yang tersedia di UNS (U_1) dan luas lahan yang meliputi lahan parkir untuk kendaraan pribadi (U_2) diperhitungkan sebagai subkriteria untuk kriteria utilitas. Tingkat kriminalitas khususnya tindak pencurian (S_1), keamanan pengguna (S_2), dan ketertiban (S_3) dipilih sebagai subkriteria untuk kriteria sekeritas. Untuk kriteria benefit dibagi menjadi 3 subkriteria, yaitu lingkungan jika dilihat dari tingkat polusi udara (B_1), kenyamanan dalam menggunakan (B_2), dan interaksi sosial yang dapat terjadi selama perjalanan dari tempat tinggal menuju UNS (B_3).

Untuk mencapai tujuan penelitian, diperlukan alternatif solusi mengenai sarana transportasi yang bisa digunakan oleh komunitas kampus dari tempat tinggal menuju kampus. Penentuan sarana transportasi kampus dalam penelitian ini berdasarkan pada sarana transportasi yang dominan digunakan di UNS. Ada-
pun sarana transportasi tersebut meliputi mobil (A_1), sepeda motor (A_2), jalan kaki (A_3), kendaraan umum yang dilanjutkan dengan ojek (A_4), dan kendaraan umum yang dilanjutkan dengan jalan kaki (A_5). Oleh karena itu telah didapatkkan kriteria, subkriteria, dan alternatif yang sesuai dengan tujuan masalah. Ketiga komponen ini kemudian disusun dalam suatu hirarki masalah seperti pada Gambar 4.1.

Gambar 4.1. Struktur hirarki pemilihan transportasi kampun yang optimal

4.2 Matriks Perbandingan Berpasangan dan Nilai Prioritas

Untuk menganalisis hierarki yang telah disusun diperlukan suatu nilai perbandingan berpasangan untuk menentukan tingkat kepentingan suatu kriteria dengan kriteria yang lain, begitu pula untuk tingkat kepentingan antar subkriteria dan alternatif. Nilai perbandingan berpasangan dinyatakan dengan nilai mutlak skala fundamental seperti pada Tabel 2.1. Dalam penelitian ini, pertimbangan keputusan dilakukan oleh dua orang pengambil keputusan. Untuk itu, diperlukan rata-rata geometrik seperti pada persamaan (2.8) untuk menentukan nilai perbandingan berpasangan.

\[a_{ij} = (Z_1 Z_2)^{1/2} \] \hspace{2cm} (4.1)

Dari persamaan (4.1) ditentukan nilai perbandingan berpasangan antar kriteria seperti pada Tabel 4.1.

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>(Z_1)</th>
<th>(Z_2)</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-U</td>
<td>3</td>
<td>5</td>
<td>3,873</td>
</tr>
<tr>
<td>E-S</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E-B</td>
<td>1/2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>U-S</td>
<td>1</td>
<td>1/2</td>
<td>1/1,4142</td>
</tr>
<tr>
<td>U-B</td>
<td>1/3</td>
<td>1/6</td>
<td>1/4,2426</td>
</tr>
<tr>
<td>S-B</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Pada Tabel 4.1, untuk perbandingan yang pertama antara kriteria efisiensi dengan utilitas menyatakan bahwa pengambil keputusan 1 menilai kriteria efisiensi tiga kali lebih penting dari utilitas, sedangkan pengambil keputusan 2 menilai kriteria efisiensi lima kali lebih penting dari utilitas. Oleh karena itu, dengan menghitung rata-rata geometrik seperti pada persamaan (4.1) didapatkan nilai perbandingan berpasangan antara efisiensi dan utilitas sebesar 3,873.
Seluruh nilai perbandingan berpasangan yang telah dihitung pada Tabel 4.1 disusun dalam suatu matriks perbandingan berpasangan antar kriteria seperti pada Tabel 4.2.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>U</th>
<th>S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>3,873</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>1/3,873</td>
<td>1</td>
<td>1/1,4142</td>
<td>1/4,2426</td>
</tr>
<tr>
<td>S</td>
<td>1/3</td>
<td>1,4142</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>4,2426</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>2,5915</td>
<td>10,5298</td>
<td>7,7071</td>
<td>2,5690</td>
</tr>
</tbody>
</table>

Dengan cara yang sama dilakukan untuk mencari nilai perbandingan berpasangan antar subkriteria. Nilai perbandingan berpasangan antar subkriteria dapat dilihat dalam Tabel 4.3.

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Subkriteria</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$E_1 - E_2$</td>
<td>1/2</td>
<td>3</td>
<td>1,2247</td>
</tr>
<tr>
<td>U</td>
<td>$U_1 - U_2$</td>
<td>1/3</td>
<td>5</td>
<td>1,2910</td>
</tr>
<tr>
<td>S</td>
<td>$S_1 - S_2$</td>
<td>2</td>
<td>3</td>
<td>2,4495</td>
</tr>
<tr>
<td>S</td>
<td>$S_1 - S_3$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>$S_2 - S_3$</td>
<td>3</td>
<td>2</td>
<td>2,4495</td>
</tr>
<tr>
<td>B</td>
<td>$B_1 - B_2$</td>
<td>3</td>
<td>5</td>
<td>3,8730</td>
</tr>
<tr>
<td>B</td>
<td>$B_1 - B_3$</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>$B_2 - B_3$</td>
<td>3</td>
<td>2</td>
<td>2,4495</td>
</tr>
</tbody>
</table>

Pada Tabel 4.3, untuk perbandingan yang pertama antara subkriteria waktu dengan biaya yang terdapat pada kriteria efisiensi menyatakan bahwa pengambil keputusan 1 menilai waktu setengah kali lebih penting dari biaya, sedangkan pengambil keputusan 2 menilai waktu lima kali lebih penting dari biaya. Dengan
menghitung rata-rata geometriknya didapatkan nilai perbandingan berpasangan antara subkriteria waktu dan biaya sebesar 1,2247. Kemudian disusun dalam matriks perbandingan berpasangan seperti pada Tabel 4.4.

Tabel 4.4. Matriks perbandingan berpasangan antar subkriteria dalam kriteria efisiensi

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>1</td>
<td>1,2247</td>
</tr>
<tr>
<td>E_2</td>
<td>1/1,2247</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1,8165</td>
<td>2,2247</td>
</tr>
</tbody>
</table>

Dengan cara yang sama dilakukan untuk menghitung nilai perbandingan berpasangan antar subkriteria yang lain. Adapun nilai perbandingan yang telah dihitung dapat disusun dalam matriks perbandingan berpasangan seperti pada Tabel 4.5, 4.6, dan 4.7.

Tabel 4.5. Matriks perbandingan berpasangan antar subkriteria dalam kriteria utilitas

<table>
<thead>
<tr>
<th></th>
<th>U_1</th>
<th>U_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_1</td>
<td>1</td>
<td>1,2910</td>
</tr>
<tr>
<td>U_2</td>
<td>1/1,2910</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1,7746</td>
<td>2,2910</td>
</tr>
</tbody>
</table>

Tabel 4.6. Matriks perbandingan berpasangan antar subkriteria dalam kriteria sekuritas

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>1</td>
<td>2,4495</td>
<td>5</td>
</tr>
<tr>
<td>S_2</td>
<td>1/2,4495</td>
<td>1</td>
<td>2,4495</td>
</tr>
<tr>
<td>S_3</td>
<td>1/5</td>
<td>1/2,4495</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1,6082</td>
<td>3,8577</td>
<td>8,4495</td>
</tr>
</tbody>
</table>

18
Tabel 4.7. Matriks perbandingan berpasangan antar subkriteria dalam kriteria benefit

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>1</td>
<td>3,8730</td>
<td>7</td>
</tr>
<tr>
<td>B_2</td>
<td>$1/3,8730$</td>
<td>1</td>
<td>2,4495</td>
</tr>
<tr>
<td>B_3</td>
<td>$1/7$</td>
<td>$1/2,4495$</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1,4011</td>
<td>5,2812</td>
<td>10,4495</td>
</tr>
</tbody>
</table>

Selanjutnya sesuai dengan susunan hierarki masalah, nilai perbandingan berpasangan yang ditentukan adalah nilai perbandingan berpasangan antara alternatif terhadap seluruh subkriteria yang ada. Untuk nilai perbandingan berpasangan antara alternatif terhadap subkriteria waktu dapat dilihat pada Tabel 4.8, sedangkan nilai perbandingan berpasangan antara alternatif terhadap subkriteria lain dapat dilihat pada Lampiran 1.

Tabel 4.8. Nilai perbandingan berpasangan antara alternatif terhadap subkriteria waktu

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>$A_1 - A_2$</td>
<td>$1/5$</td>
<td>$1/3$</td>
<td>$1/3,8730$</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>$1/3$</td>
<td>$1/2$</td>
<td>$1/2,4495$</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>2</td>
<td>$1/2$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_3$</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>2</td>
<td>3</td>
<td>$2,4495$</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>$1/5$</td>
<td>$1/3$</td>
<td>$1/3,8730$</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>3</td>
<td>2</td>
<td>$2,4495$</td>
</tr>
</tbody>
</table>

Adapun nilai-nilai perbandingan pada Tabel 4.8 dapat disajikan dalam bentuk matriks perbandingan berpasangan seperti pada Tabel 4.9, sedangkan untuk
matriks perbandingan berpasangan antara alternatif terhadap subkriteria lain dapat dilihat pada Lampiran 2.

Tabel 4.9. Matriks perbandingan berpasangan antara alternatif terhadap subkriteria waktu

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1/3,8730</td>
<td>2</td>
<td>1/2,4495</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>3,8730</td>
<td>1</td>
<td>7</td>
<td>2,4495</td>
<td>6</td>
</tr>
<tr>
<td>(A_3)</td>
<td>1/2</td>
<td>1/7</td>
<td>1</td>
<td>1/3,8730</td>
<td>1/2</td>
</tr>
<tr>
<td>(A_4)</td>
<td>2,4495</td>
<td>1/2,4495</td>
<td>3,8730</td>
<td>1</td>
<td>2,4495</td>
</tr>
<tr>
<td>(A_5)</td>
<td>1</td>
<td>1/6</td>
<td>2</td>
<td>1/2,4495</td>
<td>1</td>
</tr>
</tbody>
</table>

Jumlah 8,8225 1,9760 15,8730 4,5242 10,9495

Tabel 4.10. Bobot kriteria dan nilai prioritas antar kriteria

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>E</th>
<th>U</th>
<th>S</th>
<th>B</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0,3859</td>
<td>0,3678</td>
<td>0,3893</td>
<td>0,3893</td>
<td>0,3830</td>
</tr>
<tr>
<td>U</td>
<td>0,0996</td>
<td>0,0950</td>
<td>0,0917</td>
<td>0,0917</td>
<td>0,0945</td>
</tr>
<tr>
<td>S</td>
<td>0,1286</td>
<td>0,1343</td>
<td>0,1298</td>
<td>0,1298</td>
<td>0,1306</td>
</tr>
<tr>
<td>B</td>
<td>0,3859</td>
<td>0,4029</td>
<td>0,3893</td>
<td>0,3893</td>
<td>0,3918</td>
</tr>
</tbody>
</table>

Dengan cara yang sama dihitung pula bobot dan nilai prioritas antar sub-
kriteria. Bobot untuk subkriteria terhadap efisiensi disajikan pada Tabel 4.11.

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>E_1</th>
<th>E_2</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>0,5505</td>
<td>0,5505</td>
<td>0,5505</td>
</tr>
<tr>
<td>E_2</td>
<td>0,4495</td>
<td>0,4495</td>
<td>0,4495</td>
</tr>
</tbody>
</table>

Hasil perhitungan bobot dan nilai prioritas antar subkriteria adalah sebagai berikut. Adapun hasil selengkapnya disajikan pada Lampiran 3.

1. Bobot untuk subkriteria terhadap efisiensi sebesar 0,5505 untuk waktu dan 0,4495 untuk biaya.

2. Bobot untuk subkriteria terhadap utilitas sebesar 0,5635 untuk kondisi jalan dan 0,4365 untuk luas lahan.

3. Bobot untuk subkriteria terhadap sekuritas sebesar 0,6162 untuk kriminalitas, 0,2676 untuk keamanan pengguna, dan 0,1162 untuk ketertiban.

4. Bobot untuk subkriteria terhadap benefit sebesar 0,7057 untuk lingkungan, 0,2027 untuk kenyamanan, dan 0,0916 untuk interaksi.

4.3 Konsistensi Logis

Sebelum menganalisis lebih lanjut, perlu dilakukan uji konsistensi terhadap matriks perbandingan berpasangan. Uji ini dilakukan untuk mengetahui apakah pertimbangan keputusan yang diberikan oleh pengambil keputusan konsisten [15]. Ukuran konsistensi matriks perbandingan berpasangan antar kriteria dihitung menggunakan persamaan (2.9) dengan terlebih dahulu menghitung nilai eigen
\(\lambda_{maks} \) dengan persamaan (2.7).

\[
\lambda_{maks} = (2,5915 \times 0,3830) + (10,5298 \times 0,0945) + (7,7071 \times 0,1306) + \\
(2,5690 \times 0,3918) = 4,0012
\]

\[CI = \frac{4,0012 - 4}{4 - 1} = 0,0012\]

\[CR = \frac{0,0012}{0,90} = 0,0004\]

Dengan demikian diperoleh nilai \(CR = 0,04\% \). Oleh karena \(CR < 10\% \) sehingga pertimbangan keputusan yang diambil oleh kedua pengambil keputusan konsisten. Cara yang sama dilakukan untuk semua matriks perbandingan berpasangan sehingga diperoleh hasil konsistensi seperti pada Tabel 4.12.

Tabel 4.12. Nilai konsistensi matriks perbandingan berpasangan

<table>
<thead>
<tr>
<th>Matriks perbandingan berpasangan</th>
<th>(\lambda_{maks})</th>
<th>CI</th>
<th>RI</th>
<th>CR</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subkriteria terhadap sekuritas</td>
<td>3,0051</td>
<td>0,0051</td>
<td>0,58</td>
<td>0,0089</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Subkriteria terhadap benefit</td>
<td>3,0168</td>
<td>0,0168</td>
<td>0,58</td>
<td>0,0290</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap waktu</td>
<td>5,0550</td>
<td>0,0137</td>
<td>1,11</td>
<td>0,0124</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap biaya</td>
<td>5,0955</td>
<td>0,0239</td>
<td>1,11</td>
<td>0,0215</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap kondisi jalan</td>
<td>5,0363</td>
<td>0,0091</td>
<td>1,11</td>
<td>0,0082</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap luas lahan</td>
<td>5,0443</td>
<td>0,0111</td>
<td>1,11</td>
<td>0,0100</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap kriminalitas</td>
<td>5,1116</td>
<td>0,0279</td>
<td>1,11</td>
<td>0,0251</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap keamanan pengguna</td>
<td>5,0799</td>
<td>0,0200</td>
<td>1,11</td>
<td>0,0180</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap ketertiban</td>
<td>5,1079</td>
<td>0,0270</td>
<td>1,11</td>
<td>0,0243</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap lingkungan</td>
<td>5,1551</td>
<td>0,0388</td>
<td>1,11</td>
<td>0,0349</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap kenyamanan</td>
<td>5,1510</td>
<td>0,0377</td>
<td>1,11</td>
<td>0,0340</td>
<td>Konsisten</td>
</tr>
<tr>
<td>Alternatif terhadap interaksi</td>
<td>5,0534</td>
<td>0,0134</td>
<td>1,11</td>
<td>0,0120</td>
<td>Konsisten</td>
</tr>
</tbody>
</table>

Dari Tabel 4.12 dapat dilihat bahwa ukuran konsistensi untuk seluruh matriks perbandingan berpasangan kurang dari 10%. Dengan demikian dapat disimpulkan bahwa pertimbangan keputusan yang diambil oleh kedua pengambil keputusan konsisten untuk semua nilai perbandingan berpasangan menunjukkan hasil yang konsisten.
Untuk nilai konsistensi subkriteria terhadap efisiensi dan subkriteria terhadap utilitas tidak perlu dicari. Hal ini disebabkan matriks perbandingan dengan orde kurang dari atau sama dengan dua tidak perlu dihitung rasio konsistensinya karena untuk membandingkan dua alternatif pertimbangan dari pengambil keputusan sudah pasti konsisten [15].

4.4 Sintesis Penilaian

Setelah menghitung nilai konsistensi matriks perbandingan berpasangan dan mendapatkan hasil bahwa untuk semua matriks perbandingan berpasangan konsisten, kemudian menghitung nilai bobot keseluruhan untuk menentukan prioritas final menggunakan persamaan (2.10) dimana nilai prioritas masing-masing alternatif disajikan pada Lampiran 4. Hasil perhitungan bobot keseluruhan dapat dilihat pada Tabel 4.13.

Dari Tabel 4.13 terlihat bahwa prioritas final alternatif transportasi kampus yang optimal secara berurutan adalah jalan kaki sebesar 31,19%, kendaraan umum dilanjutkan dengan jalan kaki sebesar 22,09%, sepeda motor sebesar 20,02%, kendaraan umum dilanjutkan dengan ojek sebesar 15,24%, dan mobil sebesar 11,46%.

Dari perhitungan bobot keseluruhan subkriteria tampak bahwa yang memecati prioritas pertama adalah lingkungan, disusul dengan waktu, biaya, sampai dengan ketertiban. Jadi, dari seluruh subkriteria yang ada, pemilihan transportasi kampus yang optimal dari tempat tinggal menuju UNS memberikan dampak paling besar pada faktor lingkungan. Adapun kriteria yang menyumbangkan pengaruh paling besar terhadap prioritas subkriteria adalah benefit.
<table>
<thead>
<tr>
<th>Tingkat</th>
<th>Elemen</th>
<th>Bobot</th>
<th>Prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriteria (Tingkat 2)</td>
<td>Benefit</td>
<td>0,3918</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Efisiensi</td>
<td>0,3830</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sekuritas</td>
<td>0,1306</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Utilitas</td>
<td>0,0945</td>
<td>4</td>
</tr>
<tr>
<td>Subkriteria (Tingkat 3)</td>
<td>Lingkungan</td>
<td>0,2765</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Waktu</td>
<td>0,2109</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Biaya</td>
<td>0,1722</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kriminalitas</td>
<td>0,0805</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Kenyamanan</td>
<td>0,0794</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kondisi jalan</td>
<td>0,0533</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Luas lahan</td>
<td>0,0413</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Interaksi</td>
<td>0,0359</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Keamanan pengguna</td>
<td>0,0350</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Ketertiban</td>
<td>0,0152</td>
<td>10</td>
</tr>
<tr>
<td>Alternatif (Tingkat 4)</td>
<td>Jalan kaki</td>
<td>0,3119</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Umum + jalan kaki</td>
<td>0,2209</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sepeda motor</td>
<td>0,2002</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Umum + ojek</td>
<td>0,1524</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mobil</td>
<td>0,1146</td>
<td>5</td>
</tr>
</tbody>
</table>
BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan pembahasan yang telah dilakukan, dapat diambil kesimpulan bahwa transportasi yang optimal digunakan dari tempat tinggal dengan jarak kurang dari 3 kilometer menuju UNS adalah jalan kaki. Pemilihan transportasi ini didasarkan pada kriteria masalah yang terdiri dari efisiensi (waktu dan biaya), utilitas (kondisi jalan dan luas lahan), sekuritas (kriminalitas, keamanan pengguna, dan ketertiban), dan benefit (lingkungan, kenyamanan, dan interaksi).

5.2 Saran

Dalam penulisan Laporan Tugas Akhir ini penulis membahas tentang transportasi kampus antara tempat tinggal dengan UNS yang berjarak kurang dari 3 kilometer. Untuk itu, penulis sarankan kepada komunitas UNS yang bertempat tinggal dengan jarak kurang dari 3 kilometer untuk beralih dari kendaraan pribadi ke jalan kaki. Oleh karena itu, pihak universitas dan pemerintah diharapkan untuk meningkatkan fasilitas transportasi yang mendukung jalan kaki. Adapun penelitian menggunakan metode AHP dapat dikembangkan menggunakan metode analytic network process.
DAFTAR PUSTAKA

LAMPIRAN

Lampiran 1 : Nilai perbandingan berpasangan antara alternatif dengan subkriteria

Lampiran 2 : Matriks perbandingan berpasangan antara alternatif dengan subkriteria

Lampiran 3 : Bobot kriteria dan nilai prioritas antar subkriteria

Lampiran 4 : Bobot kriteria dan nilai prioritas antar alternatif
Lampiran 1: Nilai perbandingan berpasangan antara alternatif dengan sub-kriteria

Tabel 1. Nilai perbandingan berpasangan antara alternatif dengan subkriteria biaya

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 - A_2$</td>
<td>1/3</td>
<td>1/4</td>
<td></td>
<td>1/3,4641</td>
</tr>
<tr>
<td>$A_1 - A_3$</td>
<td>1/9</td>
<td>1/9</td>
<td></td>
<td>1/9</td>
</tr>
<tr>
<td>$A_1 - A_4$</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>$A_1 - A_5$</td>
<td>1/6</td>
<td>1/6</td>
<td></td>
<td>1/6</td>
</tr>
<tr>
<td>E_2</td>
<td>$A_2 - A_3$</td>
<td>1/5</td>
<td>1/7</td>
<td>1/5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>1/2</td>
<td>1/6</td>
<td>1/3,4641</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>7</td>
<td>5</td>
<td>5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Tabel 2. Nilai perbandingan berpasangan antara alternatif dengan subkriteria kondisi jalan

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 - A_2$</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>$A_1 - A_3$</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2,4495</td>
</tr>
<tr>
<td>$A_1 - A_4$</td>
<td>1/3</td>
<td>1</td>
<td></td>
<td>1/1,7321</td>
</tr>
<tr>
<td>$A_1 - A_5$</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>U_1</td>
<td>$A_2 - A_3$</td>
<td>5</td>
<td>7</td>
<td>5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>1</td>
<td>3</td>
<td>1,7321</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>3</td>
<td>5</td>
<td>3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>1/5</td>
<td>1/3</td>
<td>1/3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>3</td>
<td>2</td>
<td>2,4495</td>
</tr>
</tbody>
</table>
Tabel 3. Nilai perbandingan berpasangan antara alternatif dengan subkriteria luas lahan

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 - A_2$</td>
<td>1/3</td>
<td>2</td>
<td>0,8165</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_3$</td>
<td>2</td>
<td>1/5</td>
<td>0,6325</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_4$</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2,4495</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_5$</td>
<td>2</td>
<td>1/5</td>
<td>0,6325</td>
<td></td>
</tr>
<tr>
<td>U_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_3$</td>
<td>4</td>
<td>1/7</td>
<td>0,7559</td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_4$</td>
<td>2</td>
<td>1/3</td>
<td>0,8165</td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_5$</td>
<td>6</td>
<td>1/5</td>
<td>1,0954</td>
<td></td>
</tr>
<tr>
<td>$A_3 - A_4$</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$A_3 - A_5$</td>
<td>1</td>
<td>2</td>
<td>1,4142</td>
<td></td>
</tr>
<tr>
<td>$A_4 - A_5$</td>
<td>3</td>
<td>1/3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4. Nilai perbandingan berpasangan antara alternatif dengan subkriteria kriminalitas

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_2$</td>
<td>3</td>
<td>1/5</td>
<td>0,7746</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_3$</td>
<td>1/2</td>
<td>1/8</td>
<td>0,2500</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_4$</td>
<td>3</td>
<td>1/4</td>
<td>0,8600</td>
<td></td>
</tr>
<tr>
<td>$A_1 - A_5$</td>
<td>2</td>
<td>1/4</td>
<td>0,7071</td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_3$</td>
<td>1/7</td>
<td>1/3</td>
<td>1/4,5826</td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_4$</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>$A_2 - A_5$</td>
<td>1/6</td>
<td>1/5</td>
<td>1/3,4641</td>
<td></td>
</tr>
<tr>
<td>$A_3 - A_4$</td>
<td>5</td>
<td>2</td>
<td>3,1623</td>
<td></td>
</tr>
<tr>
<td>$A_3 - A_5$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$A_4 - A_5$</td>
<td>1/3</td>
<td>1</td>
<td>0,5774</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 5. Nilai perbandingan berpasangan antara alternatif dengan subkriteria keamanan pengguna

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_2</td>
<td>$A_1 - A_2$</td>
<td>5</td>
<td>3</td>
<td>3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2,4495</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>4</td>
<td>1/2</td>
<td>1,4142</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>2</td>
<td>1/4</td>
<td>0,7071</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_3$</td>
<td>1/7</td>
<td>1/5</td>
<td>1/5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>1/2</td>
<td>1/4</td>
<td>1/2,8284</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>7</td>
<td>3</td>
<td>4,5826</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2,4495</td>
</tr>
</tbody>
</table>

Tabel 6. Nilai perbandingan berpasangan antara alternatif dengan subkriteria ketermanfaatan

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_3</td>
<td>$A_1 - A_2$</td>
<td>5</td>
<td>3</td>
<td>3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>1/2</td>
<td>1/5</td>
<td>1/3,1623</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_3$</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2,4495</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>1/7</td>
<td>1/4</td>
<td>1/4,8990</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>3</td>
<td>6</td>
<td>4,2426</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>2</td>
<td>3</td>
<td>2,4495</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Tabel 7. Nilai perbandingan berpasangan antara alternatif dengan subkriteria lingkungan

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A_1 - A_2$</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2,4495</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>1/9</td>
<td>1/8</td>
<td>1/8,4853</td>
</tr>
<tr>
<td>B_1</td>
<td>$A_2 - A_3$</td>
<td>1/9</td>
<td>1/8</td>
<td>1/8,4853</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>1</td>
<td>1/2</td>
<td>0,1690</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>1/5</td>
<td>1/7</td>
<td>1/5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>9</td>
<td>5</td>
<td>6,7082</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>1/5</td>
<td>1/3</td>
<td>1/3,8730</td>
</tr>
</tbody>
</table>

Tabel 8. Nilai perbandingan berpasangan antara alternatif dengan subkriteria kemananan

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A_1 - A_2$</td>
<td>5</td>
<td>3</td>
<td>3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>6</td>
<td>7</td>
<td>6,4807</td>
</tr>
<tr>
<td>B_2</td>
<td>$A_2 - A_3$</td>
<td>3</td>
<td>7</td>
<td>4,5826</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>1</td>
<td>3</td>
<td>1,7321</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>3</td>
<td>6</td>
<td>4,2426</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>1</td>
<td>1/2</td>
<td>0,7071</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>3</td>
<td>2</td>
<td>2,4495</td>
</tr>
</tbody>
</table>
Tabel 9. Nilai perbandingan berpasangan antara alternatif dengan subkriteria interaksi

<table>
<thead>
<tr>
<th>Subkriteria</th>
<th>Alternatif</th>
<th>Z_1</th>
<th>Z_2</th>
<th>Nilai perbandingan berpasangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>$A_1 - A_2$</td>
<td>3</td>
<td>1/3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_3$</td>
<td>1/2</td>
<td>1/7</td>
<td>1/3,7417</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_4$</td>
<td>1/6</td>
<td>1/8</td>
<td>1/6,9282</td>
</tr>
<tr>
<td></td>
<td>$A_1 - A_5$</td>
<td>1/6</td>
<td>1/8</td>
<td>1/6,9282</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_3$</td>
<td>1/7</td>
<td>1/5</td>
<td>1/5,9161</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_4$</td>
<td>1/9</td>
<td>1/7</td>
<td>1/7,9373</td>
</tr>
<tr>
<td></td>
<td>$A_2 - A_5$</td>
<td>1/9</td>
<td>1/7</td>
<td>1/7,9373</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_4$</td>
<td>1/3</td>
<td>1/2</td>
<td>1/3,8730</td>
</tr>
<tr>
<td></td>
<td>$A_3 - A_5$</td>
<td>1/3</td>
<td>1</td>
<td>0,5774</td>
</tr>
<tr>
<td></td>
<td>$A_4 - A_5$</td>
<td>1</td>
<td>2</td>
<td>1,4142</td>
</tr>
</tbody>
</table>
Lampiran 2 : Matriks perbandingan berpasangan antara alternatif dengan sub-kriteria

Tabel 1. Matriks perbandingan berpasangan antara alternatif dengan subkriteria biaya

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(1)</td>
<td>(1/3,464)</td>
<td>(1/9)</td>
<td>(1/2)</td>
<td>(1/6)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(3,464)</td>
<td>(1)</td>
<td>(1/5,916)</td>
<td>(1)</td>
<td>(1/3,464)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(9)</td>
<td>(5,916)</td>
<td>(1)</td>
<td>(5,916)</td>
<td>(2)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(2)</td>
<td>(1)</td>
<td>(1/5,916)</td>
<td>(1)</td>
<td>(1/3)</td>
</tr>
<tr>
<td>(A_5)</td>
<td>(6)</td>
<td>(3,464)</td>
<td>(1/2)</td>
<td>(3)</td>
<td>(1)</td>
</tr>
<tr>
<td>Jumlah</td>
<td>(21,464)</td>
<td>(11,668)</td>
<td>(1,949)</td>
<td>(11,416)</td>
<td>(3,788)</td>
</tr>
</tbody>
</table>

Tabel 2. Matriks perbandingan berpasangan antara alternatif dengan subkriteria kondisi jalan

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(1)</td>
<td>(1/3)</td>
<td>(2,449)</td>
<td>(1/1,732)</td>
<td>(2)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(3)</td>
<td>(1)</td>
<td>(5,916)</td>
<td>(1,732)</td>
<td>(3,873)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(1/2,449)</td>
<td>(1/5,916)</td>
<td>(1)</td>
<td>(1/3,873)</td>
<td>(1/2)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(1,732)</td>
<td>(1/1,732)</td>
<td>(3,873)</td>
<td>(1)</td>
<td>(2,449)</td>
</tr>
<tr>
<td>(A_5)</td>
<td>(1/2)</td>
<td>(1/3,873)</td>
<td>(2)</td>
<td>(1/2,449)</td>
<td>(1)</td>
</tr>
<tr>
<td>Jumlah</td>
<td>(6,640)</td>
<td>(2,337)</td>
<td>(15,238)</td>
<td>(3,973)</td>
<td>(9,822)</td>
</tr>
</tbody>
</table>

Tabel 3. Matriks perbandingan berpasangan antara alternatif dengan subkriteria luas lahan

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(1)</td>
<td>(1/1,224)</td>
<td>(1/1,581)</td>
<td>(1/2,449)</td>
<td>(1/1,581)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(1,224)</td>
<td>(1)</td>
<td>(1/1,322)</td>
<td>(1/1,224)</td>
<td>(1,095)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(1,581)</td>
<td>(1,322)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1,414)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(2,449)</td>
<td>(1,224)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(A_5)</td>
<td>(1,581)</td>
<td>(1/1,095)</td>
<td>(1/1,414)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Jumlah</td>
<td>(7,836)</td>
<td>(5,277)</td>
<td>(4,095)</td>
<td>(4,224)</td>
<td>(5,142)</td>
</tr>
</tbody>
</table>
Tabel 4. Matriks perbandingan berpasangan antara alternatif dengan subkriteria kriminalitas

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1/1,2910</td>
<td>1/4</td>
<td>1/1,1547</td>
<td>1/1,4142</td>
</tr>
<tr>
<td>A_2</td>
<td>1,2910</td>
<td>1</td>
<td>1/4,5826</td>
<td>1/2</td>
<td>1/3,4641</td>
</tr>
<tr>
<td>A_3</td>
<td>4</td>
<td>4,5826</td>
<td>1</td>
<td>3,1623</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>1,1547</td>
<td>2</td>
<td>1</td>
<td>1,7321</td>
<td>1</td>
</tr>
<tr>
<td>A_5</td>
<td>1,4142</td>
<td>3,4641</td>
<td>1/2</td>
<td>1,7321</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>8,8599</td>
<td>11,8213</td>
<td>2,2844</td>
<td>7,2604</td>
<td>4,5731</td>
</tr>
</tbody>
</table>

Tabel 5. Matriks perbandingan berpasangan antara alternatif dengan subkriteria keamanan pengguna

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>3,8730</td>
<td>1/2,4495</td>
<td>1,4142</td>
<td>1/1,4142</td>
</tr>
<tr>
<td>A_2</td>
<td>1/3,8730</td>
<td>1</td>
<td>1/5,9161</td>
<td>1</td>
<td>1/2,8284</td>
</tr>
<tr>
<td>A_3</td>
<td>2,4495</td>
<td>5,9161</td>
<td>1/2</td>
<td>4,5826</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>1/1,4142</td>
<td>1</td>
<td>1/4,5826</td>
<td>1</td>
<td>1/2,4495</td>
</tr>
<tr>
<td>A_5</td>
<td>1,4142</td>
<td>2,8284</td>
<td>1/2</td>
<td>2,4495</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>5,8290</td>
<td>14,6175</td>
<td>2,2955</td>
<td>10,4463</td>
<td>4,4689</td>
</tr>
</tbody>
</table>

Tabel 6. Matriks perbandingan berpasangan antara alternatif dengan subkriteria ketertiban

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>3,8730</td>
<td>1/3,1623</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>A_2</td>
<td>1/3,8730</td>
<td>1</td>
<td>1/7</td>
<td>1/2,4495</td>
<td>1/4,8990</td>
</tr>
<tr>
<td>A_3</td>
<td>3,1623</td>
<td>7</td>
<td>1</td>
<td>4,2426</td>
<td>2,4495</td>
</tr>
<tr>
<td>A_4</td>
<td>1/2</td>
<td>2,4495</td>
<td>1/4,2426</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>A_5</td>
<td>2</td>
<td>4,8990</td>
<td>1/2,4495</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>6,9205</td>
<td>19,2215</td>
<td>2,1030</td>
<td>10,6509</td>
<td>4,4869</td>
</tr>
</tbody>
</table>
Tabel 7. Matriks perbandingan berpasangan antara alternatif dengan subkriteria lingkungan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>$1/2,4495$</td>
<td>$1/9$</td>
<td>$1/3$</td>
<td>$1/8,4853$</td>
</tr>
<tr>
<td>A_2</td>
<td>$2,4495$</td>
<td>1</td>
<td>$1/8,4853$</td>
<td>$1/1,4142$</td>
<td>$1/5,9161$</td>
</tr>
<tr>
<td>A_3</td>
<td>9</td>
<td>$8,4853$</td>
<td>1</td>
<td>$6,7082$</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>3</td>
<td>$1,4142$</td>
<td>$1/6,7082$</td>
<td>1</td>
<td>$1/3,8730$</td>
</tr>
<tr>
<td>A_5</td>
<td>$8,4853$</td>
<td>$5,9161$</td>
<td>$1/2$</td>
<td>$3,8730$</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>$23,9348$</td>
<td>$17,2238$</td>
<td>$1,8780$</td>
<td>$12,6216$</td>
<td>$3,5451$</td>
</tr>
</tbody>
</table>

Tabel 8. Matriks perbandingan berpasangan antara alternatif dengan subkriteria kenyamanan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>3,8730</td>
<td>9</td>
<td>3</td>
<td>6,4807</td>
</tr>
<tr>
<td>A_2</td>
<td>$1/3,8730$</td>
<td>1</td>
<td>4,5826</td>
<td>1,7321</td>
<td>4,2426</td>
</tr>
<tr>
<td>A_3</td>
<td>$1/9$</td>
<td>$1/4,5826$</td>
<td>1</td>
<td>$1/3$</td>
<td>$1/1,4142$</td>
</tr>
<tr>
<td>A_4</td>
<td>$1/3$</td>
<td>$1/1,7321$</td>
<td>3</td>
<td>1</td>
<td>2,4495</td>
</tr>
<tr>
<td>A_5</td>
<td>$1/6,4807$</td>
<td>$1/4,2426$</td>
<td>$1,4142$</td>
<td>$1/2,4495$</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>$1,8569$</td>
<td>$5,9043$</td>
<td>$18,9968$</td>
<td>$6,4736$</td>
<td>$14,8800$</td>
</tr>
</tbody>
</table>

Tabel 9. Matriks perbandingan berpasangan antara alternatif dengan subkriteria interaksi

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>$1/3,7417$</td>
<td>$1/6,9282$</td>
<td>$1/6,9282$</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>$1/5,9161$</td>
<td>$1/7,9373$</td>
<td>$1/7,9373$</td>
</tr>
<tr>
<td>A_3</td>
<td>$3,7417$</td>
<td>$5,9161$</td>
<td>1</td>
<td>$1/2,4495$</td>
<td>$1/1,7321$</td>
</tr>
<tr>
<td>A_4</td>
<td>$6,9282$</td>
<td>$7,9373$</td>
<td>$2,4495$</td>
<td>1</td>
<td>$1,4142$</td>
</tr>
<tr>
<td>A_5</td>
<td>$6,9282$</td>
<td>$7,9373$</td>
<td>$1,7321$</td>
<td>$1/1,4142$</td>
<td>1</td>
</tr>
<tr>
<td>Jumlah</td>
<td>$19,5981$</td>
<td>$23,7906$</td>
<td>$5,6178$</td>
<td>$2,3857$</td>
<td>$3,2619$</td>
</tr>
</tbody>
</table>
Lampiran 3: Bobot kriteria dan nilai prioritas antar subkriteria

<table>
<thead>
<tr>
<th></th>
<th>(U_1)</th>
<th>(U_2)</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_1)</td>
<td>0,5635</td>
<td>0,5635</td>
<td>0,5635</td>
</tr>
<tr>
<td>(U_2)</td>
<td>0,4365</td>
<td>0,4365</td>
<td>0,4365</td>
</tr>
</tbody>
</table>

Tabel 2. Bobot kriteria dan nilai prioritas subkriteria terhadap utilitas

<table>
<thead>
<tr>
<th></th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>0,6218</td>
<td>0,6350</td>
<td>0,5918</td>
<td>0,6162</td>
</tr>
<tr>
<td>(S_2)</td>
<td>0,2538</td>
<td>0,2592</td>
<td>0,2899</td>
<td>0,2676</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0,1244</td>
<td>0,1058</td>
<td>0,1183</td>
<td>0,1162</td>
</tr>
</tbody>
</table>

Tabel 3. Bobot kriteria dan nilai prioritas subkriteria terhadap utilitas

<table>
<thead>
<tr>
<th></th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_1)</td>
<td>0,7137</td>
<td>0,7333</td>
<td>0,6700</td>
<td>0,7057</td>
</tr>
<tr>
<td>(B_2)</td>
<td>0,1843</td>
<td>0,1894</td>
<td>0,2344</td>
<td>0,2027</td>
</tr>
<tr>
<td>(B_3)</td>
<td>0,1020</td>
<td>0,0773</td>
<td>0,0956</td>
<td>0,0916</td>
</tr>
</tbody>
</table>
Lampiran 4 : Bobot kriteria dan nilai prioritas antar alternatif

Tabel 1. Bobot kriteria dan nilai prioritas alternatif terhadap waktu

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1133</td>
<td>0,1307</td>
<td>0,1260</td>
<td>0,0902</td>
<td>0,0913</td>
<td>0,1103</td>
</tr>
<tr>
<td>A_2</td>
<td>0,4390</td>
<td>0,5061</td>
<td>0,4410</td>
<td>0,5144</td>
<td>0,5480</td>
<td>0,4951</td>
</tr>
<tr>
<td>A_3</td>
<td>0,0567</td>
<td>0,0723</td>
<td>0,0630</td>
<td>0,0571</td>
<td>0,0457</td>
<td>0,0589</td>
</tr>
<tr>
<td>A_4</td>
<td>0,2776</td>
<td>0,2066</td>
<td>0,2440</td>
<td>0,2210</td>
<td>0,2237</td>
<td>0,2346</td>
</tr>
<tr>
<td>A_5</td>
<td>0,1133</td>
<td>0,0843</td>
<td>0,1260</td>
<td>0,0902</td>
<td>0,0913</td>
<td>0,1011</td>
</tr>
</tbody>
</table>

Tabel 2. Bobot kriteria dan nilai prioritas alternatif terhadap biaya

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,0466</td>
<td>0,0247</td>
<td>0,0570</td>
<td>0,0438</td>
<td>0,0440</td>
<td>0,0432</td>
</tr>
<tr>
<td>A_2</td>
<td>0,1614</td>
<td>0,0857</td>
<td>0,0867</td>
<td>0,0876</td>
<td>0,0762</td>
<td>0,0995</td>
</tr>
<tr>
<td>A_3</td>
<td>0,4193</td>
<td>0,5070</td>
<td>0,5130</td>
<td>0,5182</td>
<td>0,5279</td>
<td>0,4971</td>
</tr>
<tr>
<td>A_4</td>
<td>0,0932</td>
<td>0,0857</td>
<td>0,0867</td>
<td>0,0876</td>
<td>0,0880</td>
<td>0,0883</td>
</tr>
<tr>
<td>A_5</td>
<td>0,2795</td>
<td>0,2969</td>
<td>0,2565</td>
<td>0,2628</td>
<td>0,2639</td>
<td>0,2719</td>
</tr>
</tbody>
</table>

Tabel 3. Bobot kriteria dan nilai prioritas alternatif terhadap kondisi jalan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1506</td>
<td>0,1426</td>
<td>0,1607</td>
<td>0,1452</td>
<td>0,2036</td>
<td>0,1605</td>
</tr>
<tr>
<td>A_2</td>
<td>0,4518</td>
<td>0,4277</td>
<td>0,3882</td>
<td>0,4356</td>
<td>0,3943</td>
<td>0,4195</td>
</tr>
<tr>
<td>A_3</td>
<td>0,0615</td>
<td>0,0723</td>
<td>0,0656</td>
<td>0,0649</td>
<td>0,0509</td>
<td>0,0631</td>
</tr>
<tr>
<td>A_4</td>
<td>0,2608</td>
<td>0,2470</td>
<td>0,2542</td>
<td>0,2515</td>
<td>0,2494</td>
<td>0,2526</td>
</tr>
<tr>
<td>A_5</td>
<td>0,0753</td>
<td>0,1104</td>
<td>0,1312</td>
<td>0,1027</td>
<td>0,1018</td>
<td>0,1043</td>
</tr>
</tbody>
</table>

38
Tabel 4. Bobot kriteria dan nilai prioritas alternatif terhadap luas lahan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1276</td>
<td>0,1547</td>
<td>0,1544</td>
<td>0,0966</td>
<td>0,1230</td>
<td>0,1313</td>
</tr>
<tr>
<td>A_2</td>
<td>0,1563</td>
<td>0,1895</td>
<td>0,1846</td>
<td>0,1933</td>
<td>0,2130</td>
<td>0,1873</td>
</tr>
<tr>
<td>A_3</td>
<td>0,2018</td>
<td>0,2507</td>
<td>0,2442</td>
<td>0,2367</td>
<td>0,2750</td>
<td>0,2417</td>
</tr>
<tr>
<td>A_4</td>
<td>0,3126</td>
<td>0,2321</td>
<td>0,2442</td>
<td>0,2367</td>
<td>0,1945</td>
<td>0,2440</td>
</tr>
<tr>
<td>A_5</td>
<td>0,2018</td>
<td>0,1730</td>
<td>0,1727</td>
<td>0,2367</td>
<td>0,1945</td>
<td>0,1957</td>
</tr>
</tbody>
</table>

Tabel 5. Bobot kriteria dan nilai prioritas alternatif terhadap kriminalitas

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1129</td>
<td>0,0655</td>
<td>0,1094</td>
<td>0,1193</td>
<td>0,1546</td>
<td>0,1123</td>
</tr>
<tr>
<td>A_2</td>
<td>0,1457</td>
<td>0,0846</td>
<td>0,0955</td>
<td>0,0689</td>
<td>0,0631</td>
<td>0,0915</td>
</tr>
<tr>
<td>A_3</td>
<td>0,4515</td>
<td>0,3877</td>
<td>0,4377</td>
<td>0,4356</td>
<td>0,4373</td>
<td>0,4300</td>
</tr>
<tr>
<td>A_4</td>
<td>0,1303</td>
<td>0,1692</td>
<td>0,1384</td>
<td>0,1377</td>
<td>0,1262</td>
<td>0,1404</td>
</tr>
<tr>
<td>A_5</td>
<td>0,1596</td>
<td>0,2930</td>
<td>0,2189</td>
<td>0,2386</td>
<td>0,2187</td>
<td>0,2258</td>
</tr>
</tbody>
</table>

Tabel 6. Bobot kriteria dan nilai prioritas alternatif terhadap keamanan pengguna

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1716</td>
<td>0,2650</td>
<td>0,1778</td>
<td>0,1354</td>
<td>0,1582</td>
<td>0,1816</td>
</tr>
<tr>
<td>A_2</td>
<td>0,0433</td>
<td>0,0684</td>
<td>0,0736</td>
<td>0,0957</td>
<td>0,0791</td>
<td>0,0722</td>
</tr>
<tr>
<td>A_3</td>
<td>0,4202</td>
<td>0,4047</td>
<td>0,4356</td>
<td>0,4387</td>
<td>0,4475</td>
<td>0,4294</td>
</tr>
<tr>
<td>A_4</td>
<td>0,1213</td>
<td>0,0684</td>
<td>0,0951</td>
<td>0,0957</td>
<td>0,0914</td>
<td>0,0944</td>
</tr>
<tr>
<td>A_5</td>
<td>0,2426</td>
<td>0,1935</td>
<td>0,2178</td>
<td>0,2345</td>
<td>0,2238</td>
<td>0,2224</td>
</tr>
</tbody>
</table>

Tabel 7. Bobot kriteria dan nilai prioritas alternatif terhadap ketertiban

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,1445</td>
<td>0,2015</td>
<td>0,1504</td>
<td>0,1878</td>
<td>0,1114</td>
<td>0,1591</td>
</tr>
<tr>
<td>A_2</td>
<td>0,0373</td>
<td>0,0520</td>
<td>0,0679</td>
<td>0,0383</td>
<td>0,0455</td>
<td>0,0482</td>
</tr>
<tr>
<td>A_3</td>
<td>0,4569</td>
<td>0,3642</td>
<td>0,4755</td>
<td>0,3983</td>
<td>0,5459</td>
<td>0,4482</td>
</tr>
<tr>
<td>A_4</td>
<td>0,0722</td>
<td>0,1274</td>
<td>0,1121</td>
<td>0,0939</td>
<td>0,0743</td>
<td>0,0960</td>
</tr>
<tr>
<td>A_5</td>
<td>0,2890</td>
<td>0,2549</td>
<td>0,1941</td>
<td>0,2817</td>
<td>0,2229</td>
<td>0,2485</td>
</tr>
</tbody>
</table>
Tabel 8. Bobot kriteria dan nilai prioritas alternatif terhadap lingkungan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,0418</td>
<td>0,0237</td>
<td>0,0592</td>
<td>0,0264</td>
<td>0,0332</td>
<td>0,0369</td>
</tr>
<tr>
<td>A_2</td>
<td>0,1023</td>
<td>0,0581</td>
<td>0,0628</td>
<td>0,0560</td>
<td>0,0477</td>
<td>0,0654</td>
</tr>
<tr>
<td>A_3</td>
<td>0,3760</td>
<td>0,4926</td>
<td>0,5325</td>
<td>0,5315</td>
<td>0,5642</td>
<td>0,4993</td>
</tr>
<tr>
<td>A_4</td>
<td>0,1253</td>
<td>0,0821</td>
<td>0,0794</td>
<td>0,0792</td>
<td>0,0728</td>
<td>0,0878</td>
</tr>
<tr>
<td>A_5</td>
<td>0,3545</td>
<td>0,3435</td>
<td>0,2662</td>
<td>0,3069</td>
<td>0,2821</td>
<td>0,3106</td>
</tr>
</tbody>
</table>

Tabel 9. Bobot kriteria dan nilai prioritas alternatif terhadap kenyamanan

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,5385</td>
<td>0,6560</td>
<td>0,4738</td>
<td>0,4634</td>
<td>0,4355</td>
<td>0,5134</td>
</tr>
<tr>
<td>A_2</td>
<td>0,1390</td>
<td>0,1694</td>
<td>0,2412</td>
<td>0,2676</td>
<td>0,2851</td>
<td>0,2205</td>
</tr>
<tr>
<td>A_3</td>
<td>0,0598</td>
<td>0,0370</td>
<td>0,0526</td>
<td>0,0515</td>
<td>0,0475</td>
<td>0,0497</td>
</tr>
<tr>
<td>A_4</td>
<td>0,1795</td>
<td>0,0978</td>
<td>0,1579</td>
<td>0,1545</td>
<td>0,1646</td>
<td>0,1509</td>
</tr>
<tr>
<td>A_5</td>
<td>0,0831</td>
<td>0,0399</td>
<td>0,0744</td>
<td>0,0631</td>
<td>0,0672</td>
<td>0,0655</td>
</tr>
</tbody>
</table>

Tabel 10. Bobot kriteria dan nilai prioritas alternatif terhadap interaksi

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>Nilai prioritas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0,0510</td>
<td>0,0420</td>
<td>0,0476</td>
<td>0,0605</td>
<td>0,0442</td>
<td>0,0491</td>
</tr>
<tr>
<td>A_2</td>
<td>0,0510</td>
<td>0,0420</td>
<td>0,0301</td>
<td>0,0528</td>
<td>0,0386</td>
<td>0,0429</td>
</tr>
<tr>
<td>A_3</td>
<td>0,1909</td>
<td>0,2487</td>
<td>0,1780</td>
<td>0,1711</td>
<td>0,1770</td>
<td>0,1931</td>
</tr>
<tr>
<td>A_4</td>
<td>0,3535</td>
<td>0,3336</td>
<td>0,4360</td>
<td>0,4192</td>
<td>0,4336</td>
<td>0,3952</td>
</tr>
<tr>
<td>A_5</td>
<td>0,3535</td>
<td>0,3336</td>
<td>0,3083</td>
<td>0,2964</td>
<td>0,3066</td>
<td>0,3197</td>
</tr>
</tbody>
</table>