PELABELAN SELIMUT (a,d)-CYCLE-TOTAL ANTI AJAIB SUPER PADA GRAF BUNGA MATAHARI, GRAF BROKEN FAN, DAN GRAF GENERALIZED FAN

Khunti Qonaah, Mania Roswitha, dan Pangadi

Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

ABSTRAK. Graf sederhana G=(V(G),E(G)) memuat (a,d)-H-anti ajaib super, jika terdapat fungsi $f:V(G)\cup E(G)\to \{1,2,\ldots,|V(G)|+|E(G)|\}$, sedemikian sehingga untuk setiap subgraf H' dari G yang isomorfik dengan selimut H, bobot H' adalah $\omega(H')=\sum_{v\in V(H')}f(v)+\sum_{e\in E(H')}f(e)$ membentuk barisan aritmatika $\{a,a+d,a+2d,\ldots,a+(t-1)d\}$ dimana a dan d adalah bilangan bulat positif dan t banyak subgraf dari G yang isomorfik dengan H. Kemudian graf G disebut (a,d)-H-anti ajaib super, jika $f(V(G))=\{1,2,\ldots,|V(G)|\}$. Dalam penelitian ini, dibuktikan $(a,d)-C_3$ -anti ajaib super pada graf bunga matahari SF_n untuk n genap ≥ 4 , graf broken fan BF(m,n) untuk $m\geq 2$ dan $n\geq 2$. dan graf generalized fan $F_{m,n}$ untuk $m\geq 3$ dan $n\geq 2$.

 $\overline{\textbf{Kata kunci}}$: (a,d)-cycle-anti ajaib super, graf bunga matahari, graf broken fan, graf generalized fan

1. Pendahuluan

Pelabelan graf adalah pemberian nilai, biasanya berupa bilangan bulat positif atau bilangan asli pada titik, atau sisi, atau keduanya, agar memenuhi kondisi tertentu (Gallian [1]). Ada beberapa jenis pelabelan graf yang berkembang saat ini, seperti pelabelan titik, pelabelan sisi, dan pelabelan total. Pelabelan total pada suatu graf yang sekarang banyak dikembangkan adalah pelabelan ajaib dan pelabelan anti ajaib.

Pelabelan anti ajaib terus berkembang setelah pertama kali diperkenalkan oleh Hartsfield dan Ringel [3] pada tahun 1990. Bodendiek dan Walther memperkenalkan konsep dari pelabelan (a,d)— anti ajaib pada tahun 1993 (Gallian [1]), kemudian pada tahun 2009 Inayah et al. [8] memperkenalkan pelabelan selimut (a,d) - H—total anti ajaib. Pelabelan selimut (a,d) - H—total anti ajaib pada graf G merupakan pemetaan bijektif fungsi f dari $V(G) \cup E(G) \rightarrow \{1,2,\ldots,|V(G)|+|E(G)|\}$, sedemikian sehingga untuk setiap subgraf H' dari graf G yang isomorfik dengan selimut H, bobot H' adalah $\omega(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)$ membentuk suatu barisan aritmatika $\{a, a + d, a + 2d, \ldots, a + (t-1)d\}$, dengan a dan d adalah bilangan bulat positif dan a adalah banyak subgraf dari a yang isomorfik dengan a. Kemudian graf a dikatakan a adalah banyak subgraf dari a yang isomorfik dengan a. Kemudian graf a dikatakan a adalah banyak subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a yang isomorfik dengan a titik a subgraf dari a da

Inayah et al. [8] melakukan penelitian tentang pelabelan selimut (a,d) - cycle—anti ajaib pada graf kipas. Inayah [4] juga melakukan penelitian tentang pelabelan selimut (a,d) - H—anti ajaib super pada graf roda dan graf amalgamasi-subgraf. Karyanti [6] melakukan penelitian tentang pelabelan selimut (a,d) - H—anti ajaib super pada graf fan, sun, dan generalized Petersen. Dalam penelitian ini, dibuktikan pelabelan selimut (a,d) - cycle—anti ajaib super pada graf yang belum pernah diteliti, yaitu graf bunga matahari SF_n , graf broken fan BF(m,n), dan graf generalized fan $F_{m,n}$.

2. Hasil Penelitian

2.1. **Multihimpunan** k-**seimbang.** Maryati [7] mendefinisikan multihimpunan k- seimbang sebagai berikut. Misalkan $k \in N$ dan Y adalah multihimpunan bilangan bulat positif. Multihimpunan Y disebut k seimbang, jika terdapat k subhimpunan dari Y, yaitu Y_1, Y_2, \ldots, Y_k , sedemikian sehingga untuk setiap $i \in [1, k]$ berlaku $|Y_i| = \frac{|Y|}{k}$, $\Sigma Y_i = \frac{\Sigma Y}{k} \in N$, dan $\biguplus_{i=1}^k Y_i = Y$. Teknik multihimpunan k-seimbang dari Roswitha dan Baskoro [9] yang digunakan dalam penelitian ini adalah sebagai berikut.

Lema 2.1. Diberikan x dan y bilangan bulat non negatif. Diketahui X = [x+1, x(y+1)] dengan |X| = xy dan Y = [x(y+2), 2x(y+1)-1] dimana |Y| = xy. Maka multihimpunan $K = X \uplus Y$, adalah xy-seimbang dengan semua anggotanya merupakan himpunan yang mempunyai 2 anggota.

Selanjutnya, dibuktikan beberapa lema.

Lema 2.2. Misalkan $k \ge 4$, dengan k adalah bilangan bulat genap. Jika multihimpunan $W = [k+2, 2k+1] \uplus [3k+2, 4k+1]$, maka W adalah k-seimbang.

Bukti. Untuk $i \in [1, k]$ dengan k genap ≥ 4 didefinisikan himpunan

$$W_i = \begin{cases} \{2k+3-2i, 3k+2i\}, & i \in [1, \frac{k}{2}]; \\ \{3k+2-2i, 2k+1+2i\}, & i \in [\frac{k}{2}+1, k]. \end{cases}$$

Dapat dilihat bahwa untuk setiap $i \in [1, k]$ berlaku $|W_i| = 2$, $W_i \subset W$ dan $\biguplus_{i=1}^k W_i = W$. Karena $\sum W_i = 5k + 3$ untuk setiap $i \in [1, k]$, maka W adalah k-seimbang.

Lema 2.3. Misalkan $k \geq 4$, dengan k adalah bilangan bulat genap. Jika multihimpunan $V = [1, 2k+1]/\{\frac{k}{2}+1\} \uplus [2k+2, 3k+1]$, maka V adalah k-seimbang.

Bukti. Untuk $i \in [1,k]$ dengan kgenap ≥ 4 didefinisikan himpunan

$$V_i \ \equiv \ \left\{ \begin{array}{l} \{2k+3-2i,\frac{5k}{2}+1+i,i\}, & i \in [1,\frac{k}{2}]; \\ \{3k+2-2i,\frac{3k}{2}+1+i,i+1\}, & i \in [\frac{k}{2}+1,k]. \end{array} \right.$$

Dapat dilihat bahwa untuk setiap $i \in [1, k]$ berlaku $|V_i| = 3$, $V_i \subset V$ dan $\biguplus_{i=1}^k V_i = V$. Karena $\sum V_i = \frac{9k}{2} + 4$ untuk setiap $i \in [1, k]$, maka V adalah k-seimbang.

Lema 2.4. Misalkan $k \ge 4$, dengan k adalah bilangan bulat genap. Jika multihimpunan $Y = [k+2, 2k+1] \uplus [5k+2, 6k+1]$, maka Y adalah k-seimbang.

Bukti. Untuk $i \in [1,k]$ dengan kgenap ≥ 4 didefinisikan himpunan

$$Y_i = \begin{cases} \{2k+3-2i,5k+2i\}, & i \in [1,\frac{k}{2}]; \\ \{3k+2-2i,4k+1+2i\}, & i \in [\frac{k}{2}+1,k]. \end{cases}$$

Dapat dilihat bahwa untuk setiap $i \in [1, k]$ berlaku $|Y_i| = 2$, $Y_i \subset Y$ dan $\bigcup_{i=1}^k Y_i = Y$. Karena $\sum Y_i = 7k + 3$ untuk setiap $i \in [1, k]$, maka Y adalah k-seimbang.

2.2. $(a,d) - C_3$ -Anti Ajaib Super pada Graf Bunga Matahari SF_n . Inayah [4] mendefinisikan graf bunga matahari SF_n adalah graf yang diperoleh dari sebuah graf roda W_n , yang titik-titiknya adalah $c, v_0, v_1, \ldots, v_{n-1}$, dan penambahan n buah titik $w_0, w_1, \ldots, w_{n-1}$, dengan w_i dihubungkan oleh sebuah sisi ke $v_i v_{i+1}$ untuk setiap $i = 0, 1, 2, \ldots, n-1$, dengan i-1 dalam modulo n. Graf bunga matahari SF_n mempunyai $order |V(SF_n)| = 2n + 1$ dan $size |E(SF_n)| = 4n$. Batas atas d pelabelan $(a, d) - C_3$ -selimut anti ajaib super pada graf bunga matahari SF_n yaitu sebagai berikut.

Lema 2.5. Jika graf bunga matahari SF_n dengan n genap ≥ 4 merupakan $(a,d)-C_3-$ anti ajaib super, maka $d \leq \frac{18n-15}{2n-1}$.

Bukti. Misalkan G adalah graf bunga matahari SF_n dengan n genap ≥ 4 dan H adalah graf $cycle\ C_3$. Misalkan $|V(G)|=v_G=2n+1,\ |E(G)|=e_G=4n,\ |V(H)|=v_H=3$, dan $|E(H)|=e_H=3$. Banyak subgraf yang isomorfik dengan H adalah 2n. Jika graf G merupakan $(a,d)-C_3$ -anti ajaib super, maka bobot-H terbesar tidak lebih dari $v_G+(v_G-1)+(v_G-2)+\ldots+(v_G-(v_H-1))+(v_G+e_G)+(v_G+e_G-1)+(v_G+e_G-1)+(v_G+e_G-2)+\ldots+(v_G+e_G-(e_H-1))$ atau $a+(2n-1)d\leq 24n$ dan bobot-H terkecil $(1+2+\ldots+v_H)+(v_G+1)+(v_G+2)+\ldots+(v_G+e_H)$ atau $a\geq 6n+15$. Sehingga, diperoleh $d\leq \frac{18n-15}{2n-1}$.

Berikut ini disajikan pelabelan $(a,d)_m C_{3\overline{o}}$ anti, ajaib super pada graf bunga matahari SF_n untuk d=1 pada Teorema 2.1.

Teorema 2.1. Misalkan G adalah graf bunga matahari SF_n dengan n genap ≥ 4 , maka terdapat pelabelan $(\frac{29}{2}n+9,1)-C_3$ -anti ajaib super.

Bukti. Diketahui G adalah graf bunga matahari SF_n dimana n genap ≥ 4 dengan |V(G)| = 2n+1 dan |E(G)| = 4n. Misalkan Z = [1,6n+1] dan partisi Z menjadi 5 multihimpunan, $Z = U \biguplus V \biguplus W \biguplus X \biguplus Y$ dengan $U = \{\frac{n}{2}+1\}, \ V = [1,2n] \setminus \{\frac{n}{2}+1\} \uplus [2n+2,3n+1], W = [n+2,2n+1] \uplus [3n+2,4n+1], X = [4n+2,5n+1], dan <math>Y = [n+2,2n+1] \uplus [5n+2,6n+1].$

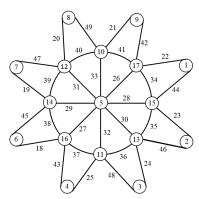
Misalkan H_h adalah sembarang subgraf C_3 dari G dengan $V(H_h)$ bagian roda W_n yaitu, $V(H_h) = \{c, v_1, v_2\}, \{c, v_2, v_3\}, \ldots, \{c, v_{n-1}, v_n\}, \{c, v_n, v_1\}$ dan $V(H_h)$ bukan bagian dari roda W_n yaitu $V(H_h) = \{v_1, v_2, w_1\}, \{v_2, v_3, w_2\}, \ldots, \{v_{n-1}, v_n, w_{n-1}\}, \{v_n, v_1, w_n\}$. Banyaknya subgraf yang isomorfik dengan C_3 adalah 2n. Didefinisikan fungsi bijektif $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, 6n+1\}$ dan $f(V(G)) = \{1, 2, 3, \ldots, 2n+1\}$.

Seluruh titik dan sisi dari setiap subgraf H_h dilabeli dengan beberapa ketentuan. Berdasarkan Lema 2.2, untuk k=n diperoleh W adalah n-seimbang. Titik v_i dilabeli dengan interval [n+2,2n+1] dari himpunan W dan labeli sisi yang incident dengan v_i atau cv_i dengan interval [3n+2,4n+1] dari himpunan W, sedemikian sehingga diperoleh bahwa $\sum W_i = 5n+3$. Kemudian labeli titik pusat c dengan $\frac{1}{2}n+1$. Selanjutnya, gunakan anggota dari himpunan $X=\{4n+1+i,i\in[1,n]\}$ untuk melabeli sisi v_iv_{i+1} dari kiri ke kanan (searah jarum jam). Setelah seluruh titik dan sisi dilabeli, diperoleh untuk setiap $h\in[1,n]$ bobot H_h bagian dari roda W_n adalah $\omega(H_{h_1})=2(\sum_{i=1}^h W_i)+\sum_{i=1}^h U_i+\sum_{i=1}^h X_i=2(5n+3)+(\frac{1}{2}n+1)+(4n+1+h)=\frac{29}{2}n+8+h$, Sehingga $d=\omega(H_{h_1+1})-\omega(H_{h_1})=1$ dan $d=\omega(H_1)=\frac{29}{2}n+9$, maka graf bunga matahari SF_n adalah $(\frac{29}{2}n+9,1)-C_3$ -anti ajaib super untuk d=00 bagian roda d=01.

Selanjutnya, labeli n buah titik w_i dan sisi v_iw_i serta sisi $v_{i+1}w_i$ dengan beberapa ketentuan. Berdasarkan Lema 2.3, untuk k=n diperoleh bahwa V adalah n-seimbang. Labeli titik w_i dimana $i \in [1,n]$ dengan interval $[1,n+1] \setminus \{\frac{1}{2}n+1\}$ dari himpunan V, kemudian labeli sisi v_iw_i dengan interval [2n+2,3n+1] dari himpunan V, sedemikian sehingga ketika dijumlah dengan label v_i yang incident dengan sisi v_iw_i diperoleh $\sum V_i = \frac{9}{2}n+4$. Selanjutnya, berdasarkan Lema 2.4 untuk k=n diperoleh bahwa Y adalah n-seimbang. Labeli sisi $v_{i+1}w_i$ dengan interval [5n+2,6n+1] dari himpunan Y, sedemikian sehingga ketika dijumlah dengan label v_{i+1} yang incident dengan $v_{i+1}w_i$ diperoleh $\sum Y_i = 7n+3$. Setelah seluruh titik dan sisi dilabeli, diperoleh untuk setiap $h \in [1,n]$ bobot H_h bukan bagian dari roda W_n adalah $\omega(H_{h_2}) = \sum_{i=1}^h V_i + \sum_{i=1}^h Y_i + \sum_{i=1}^h X_i = (\frac{9}{2}n+4) + (7n+3) + (4n+1+h) = \frac{31}{2}n+8+h$. Sehingga $d = \omega(H_{h_2+1}) - \omega(H_{h_2}) = 1$ dan $d = \omega(H_1) = \frac{31}{2}n+9$, maka graf bunga matahari SF_n adalah $(\frac{31}{2}n+9,1) - C_3$ -anti ajaib super untuk H bukan bagian roda W_n .

Dapat dibuktikan bahwa bobot $\omega(H_{h_1})$ untuk $h_1=n+1$ sama dengan bobot $\omega(H_{h_2})$ untuk $h_2=1$ yaitu $\omega(H_{h_1=n+1})=\frac{29}{2}n+8+n+1=\frac{31}{2}n+9=\omega(H_{h_2=1})$. Atau dapat dinyatakan bahwa bobot H_h dimana $h\in[1,2n]$ yang isomorfik dengan C_3 adalah $\omega(H_h)=\frac{29}{2}n+8+i, d=\omega(H_{h+1})-\omega(H_h)=1$ dan $a=\omega(H_1)=\frac{29}{2}n+9$. Terbukti bahwa graf bunga matahari SF_n merupakan $(\frac{29}{2}n+9,1)-C_3$ -anti ajaib super.

Contoh dari $(\frac{29}{2}n+9,1)-C_3$ -anti ajaib super pada SF_n dengan n=8 dapat dilihat pada Gambar 1.



Gambar 1. $(125,1) - C_3$ -anti ajaib super pada graf SF_8

3

(a,d) - CYCLE-TOTAL ANTI AJAIB.

2.3. $(a,d)-C_3$ -Anti Ajaib Super pada Graf Broken Fan BF(m,n). Chopra et al. [2] mendefinisikan graf broken fan BF(m,n) adalah graf yang memiliki $V(BF(m,n)) = \{c\} \cup \{v_1, \dots, v_m\} \cup \{u_1, \dots, u_n\}$ dan $E(BF(m,n)) = \{(c,v_i)|i=1, \dots, m\} \cup \{(c,u_i)|i=1, \dots, m\} \cup E(P_m) \cup E(P_n)$. Graf broken fan BF(m,n) mempunyai order |V(BF(m,n))| = m+n+1 dan size |E(BF(m,n))| = 2m+2n-2. Batas atas d pelabelan $(a,d)-C_3$ -anti ajaib super pada graf broken fan BF(m,n) yaitu sebagai berikut.

Lema 2.6. Jika graf broken fan BF(m,n) dengan $m \ge 2$ dan $n \ge 2$ merupakan $(a,d) - C_3$ —anti ajaib super, maka $d \le \frac{9m+9n-21}{m+n-3}$.

Bukti. Misalkan G adalah graf broken fan BF(m,n) dengan $m \geq 2$ dan $n \geq 2$ dan H adalah graf cycle C_3 . Misalkan $|V(G)| = v_G = m+n+1$, $|E(G)| = e_G = 2m+2n-2$, $|V(H)| = v_H = 3$, dan $|E(H)| = e_H = 3$. Banyak subgraf yang isomorfik dengan H adalah a+b-2. Jika graf broken fan BF(m,n) merupakan $(a,d)-C_3$ -anti ajaib super, maka bobot-H terbesar tidak lebih dari $v_G + (v_G - 1) + (v_G - 2) + \ldots + (v_G - (v_H - 1)) + (v_G + e_G) + (v_G + e_G - 1) + (v_G + e_G - 2) + \ldots + (v_G + e_G - (e_H - 1))$ atau $a + (m+n-3)d \leq 12m+12n-6$ dan bobot-H terkecil $(1+2+\ldots+v_H)+(v_G+1)+(v_G+2)+\ldots+(v_G+e_H)$ atau $a \geq 3m+3n+15$. Sehingga, diperoleh $d \leq \frac{9m+9n-21}{m+v-3}$.

Berikut ini disajikan pelabelan $(a, d) - C_3$ -anti ajaib super pada graf broken fan BF(m, n) untuk d = 1 pada Teorema 2.2.

Teorema 2.2. Misalkan G adalah graf broken fan BF(m,n) dengan $m \geq 2$ dan $n \geq 2$, maka terdapat pelabelan $(6(m+n)+9,1)-C_3$ -anti ajaib super.

Bukti. Diketahui Gadalah grafbroken fan BF(m,n) dimana $m\geq 2$ dan $n\geq 2$ dengan |V(G)|=m+n+1 dan |E(G)|=2m+2n-2. Misalkan A=[1,3m+3n-1] dan partisi Amenjadi 4 himpunan, $A=B\cup C\cup D\cup E$ dengan B=1, C=[2,m+n+1], D=[m+n+2,2m+2n+1], dan E=[2m+2n+2,3m+3n-1].

Misalkan H_h adalah sembarang subgraf C_3 dari G dengan $V(H_h) = \{c, v_1, v_2\}, \{c, v_2, v_3\}, \ldots, \{c, v_{m-1}, v_m\}, \{c, u_1, u_2\}, \{c, u_2, u_3\}, \{c, u_3, u_4\}, \ldots, \{c, u_{n-1}, u_n\}$. Banyaknya subgraf dalam graf G yang isomorfik dengan C_3 adalah m+n-2. Didefinisikan fungsi bijektif $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, 3m+3n-1\}$ dan $f(V(G)) = \{1, 2, 3, \ldots, m+n+1\}$.

Seluruh titik dan sisi dari setiap subgraf H dilabeli dengan beberapa ketentuan. Labeli titik pusat c dengan 1. Kemudian, definisikan $X = C \cup D$ dan partisi X menjadi $\{X_k, 1 \leq k \leq xy\}$ dengan

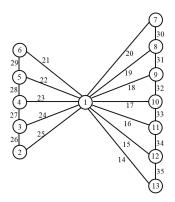
$$a_k = x + k$$

$$b_k = 2x(y+1) - k$$

untuk x=1 dan y=m+n maka X adalah (m+n)-seimbang. Berdasarkan Lema 2.1, labeli titik v_i dimana $i\in[1,m]$ dan u_j dimana $j\in[1,n]$ dari G dengan anggota a_k dimana $k\in[1,m+n]$ dari X_k . Selanjutnya, gunakan anggota b_k dimana $k\in[1,m+n]$ untuk melabeli sisi (c,v_i) dimana $i\in[1,m]$ dan (c,u_j) dimana $j\in[1,n]$ dari graf G. Diperoleh $\sum X_k=2m+2n+3$. Selanjutnya, gunakan anggota dari himpunan $E=\{2m+2n+1+j|1\leq j\leq m+n-2\}$ untuk melabeli sisi $E(P_m)$ dan sisi $E(P_n)$ dari kiri ke kanan (searah jarum jam), diperoleh $\sum E_k=2m+2n+1-k$ dimana $k\in[1,m+n-2]$.

Misalkan $\omega(H_h)$ adalah bobot subgraf H yang isomorfik dengan C_3 , maka untuk setiap $h \in [1, m+n-2]$ diperoleh $\omega(H_h) = \sum B_h + \sum X_h + \sum E_h = 1 + 2(2m+2n+3) + (2m+2n+1+h) = 4m+2m+4n+2n+1+6+1+h=6(m+n)+8+h$ sehingga $d = \omega(H_{h+1}) - \omega(H_h) = 1$ dan $a = \omega(H_1) = 6(m+n)+9$. Terbukti bahwa graf broken fan BF(m,n) dengan m dan $n \geq 2$, terdapat pelabelan $(6(m+n)+9,1)-C_3$ -anti ajaib super.

Contoh dari $(6(m+n)+9,1)-C_3$ -anti ajaib super pada BF(m,n) dengan m=5 dan n=7 dapat dilihat pada Gambar 2.



Gambar 2. $(81,1) - C_3$ -anti ajaib super pada graf BF(5,7)

2.4. $(a,d)-C_3$ -Anti Ajaib Super pada Graf Generalized Fan $F_{m,n}$. Intaja dan Sitthiwirattham [5] mendefinisikan graf generalized fan $F_{m,n} \cong \overline{K}_m + P_n$ adalah graf dengan $V(F_{m,n}) = V(\overline{K}_m) \cup V(P_n)$ dan $E(F_{m,n}) = E(P_n) \cup \{uv | u \in V(\overline{K}_m), v \in V(P_n)\}$. Graf generalized fan $F_{m,n}$ mempunyai order $|V(F_{m,n})| = m+n$ dan size $|E(F_{m,n})| = mn+n-1$. Batas atas d pelabelan $(a,d)-C_3$ -anti ajaib super pada graf generalized fan $F_{m,n}$ yaitu sebagai berikut.

Lema 2.7. Jika graf generalized fan $F_{m,n}$ dengan $m \ge 3$ dan $n \ge 2$ merupakan $(a,d) - C_3$ -anti ajaib super, maka $d \le \frac{3mn+3m+6n-21}{mn-m-1}$.

Bukti. Misalkan Gadalah graf generalized fan $F_{m,n}$ dengan $m\geq 3$ dan $n\geq 2$ dan Hadalah graf $cycle\ C_3$. Misalkan $|V(G)|=v_G=m+n, |E(G)|=e_G=mn+n-1, |V(H)|=v_H=3,$ dan $|E(H)|=e_H=3$. Banyak subgraf H yang isomorfik dengan C_3 adalah m(n-1). Jika graf generalized fan $F_{m,n}$ merupakan $(a,d)-C_3$ -anti ajaib super, maka bobot-H terbesar tidak lebih dari $v_G + (v_G - 1) + (v_G - 2) + \ldots + (v_G - (v_H - 1)) + (v_G + e_G) + (v_G + e_G - 1) + (v_G + e_G - 2) + \ldots + (v_G + e_G - (e_H - 1))$ atau $a + (m(n-1) - 1)d \leq 3mn + 6m + 9n - 9$ dan bobot-H terkecil $(1 + 2 + \ldots + v_H) + (v_G + 1) + (v_G + 2) + \ldots + (v_G + e_H)$ atau $a \geq 3m + 3n + 12$. Sehingga, diperoleh $d \leq \frac{3mn + 3m + 6n - 21}{mn - m - 1}$.

Berikut ini disajikan pelabelan $(a,d) - C_3$ -anti ajaib super pada graf generalized $fan F_{m,n}$ untuk d=1 pada Teorema 2.3 dan d=2 pada Teorema 2.4.

Teorema 2.3. Misalkan G adalah graf generalized fan $F_{m,n}$ dengan $m \geq 3$ dan $n \geq 2$, maka terdapat pelabelan

- (1) $(\frac{3}{2}mn + \frac{9}{2}m + \frac{11}{2}n + \frac{5}{2}, 1) C_3$ -anti ajaib super untuk n ganjil, dan (2) $(\frac{3}{2}mn + 4m + \frac{11}{2}n + 3, 1) C_3$ -anti ajaib super untuk n genap.

Bukti. Berdasarkan definisi dari graf generalized fan $F_{m,n}$ oleh Intaja dan Sitthiwirattham [5] diperoleh bahwa graf generalized fan $F_{m,n}$ mempunyai 2 macam titik yaitu u_i dan v_i dimana u_i adalah titik pada \overline{K}_m dengan $i \in [1, m]$ dan v_i adalah titik pada path P_n dengan $j \in [1, n]$, sehingga terdapat sisi $v_i v_{i+1}$ dan sisi yang menghubungkan titik u_i ke titik v_j yaitu sisi $u_i v_j, u_i v_{j+1}, \dots, u_i v_n$. Misalkan fungsi bijektif $\xi_1 : V(G) \cup E(G) \rightarrow$ $\{1, 2, 3, \dots, mn + m + 2n - 1\}$ dengan $\xi_1(V(G)) = \{1, 2, 3, \dots, m + n + 1\}$. Akan dibuktikan menjadi 2 kasus.

Kasus 1. Untuk n ganjil.

Definisikan pelabelan ξ_1 untuk melabeli setiap titik dan sisi dari graf generalized fan $F_{m,n}$ sebagai berikut.

$$\xi_{1}(u_{i}) = n+i, i \in [1,m],
\xi_{1}(v_{j}) = \begin{cases} \frac{n+j}{2}, & j \text{ ganjil}, j \in [1,n], \\ \frac{j}{2}, & j \text{ genap}, j \in [1,n], \\ \frac{j}{2}, & j \text{ genap}, j \in [1,n], \\ j \text{ genap}, j \in [1,n], \\ j \text{ genap}, j \in [1,n], \end{cases}
\xi_{1}(u_{i}v_{j}) = \begin{cases} \frac{(j+1)m}{2} + n+i, & j \text{ ganjil}, i \in [1,m], \\ \frac{(n+1)m}{2} + \frac{(j+2)m}{2} + n+1-i, & j \text{ genap}, i \in [1,m]. \end{cases}$$
(2.1)

Berdasarkan pelabelan (2.1) bobot $\omega(C_3^i)$ dengan $i \in [1, m]$ pada graf generalized fan $F_{m,n}$ diperoleh dengan menjumlahkan label setiap titik dan sisi dalam subgraf C_3^i sebagai berikut.

$$\begin{array}{lcl} \omega(C_3^i) & = & \xi_1(u_i) + \sum_{k=j}^{j+1} \xi_1(v_k) + \xi_1(v_jv_{j+1}) + \sum_{k=j}^{j+1} \xi_1(u_iv_k) \\ & = & n+i+\frac{n+j}{2} + \frac{j+1}{2} + mn + m + 2n - j + \frac{j+1}{2}m + n + i + \frac{n+1}{2}m \\ & & + \frac{j+3}{2}m + n + 1 - i \\ & = & \frac{3}{2}mn + \frac{7}{2}m + jm + \frac{11}{2}n + \frac{3}{2} + i. \end{array}$$

Dapat diperiksa bahwa untuk setiap $j \in [1, n-1]$ dan $i \in [1, m]$ bobot $\omega(C_3^i)$ untuk j=2merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [m+1,2m]$, begitu juga untuk $j=3,4,\ldots,n-1$ merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [2m+1,(n-1)m]$. Atau dapat dituliskan untuk

 $i \in [1, (n-1)m]$ bobot pada C_3^i adalah $\omega(C_3^i) = \frac{3}{2}mn + \frac{9}{2}m + \frac{11}{2}n + \frac{3}{2} + i$. Nilai d dapat diperoleh dari selisih $\omega(C_3^i)$ dengan $\omega(C_3^{i+1})$ yaitu, $d = \omega(C_3^{i+1}) - \omega(C_3^i) = (\frac{3}{2}mn + \frac{9}{2}m + \frac{11}{2}n + \frac{3}{2} + i) = 1$ dan nilai adapat diperoleh dari $\omega(C_3^i)$ untuk i=1 yaitu, $a=\omega(C_3^1)=\frac{3}{2}mn+\frac{9}{2}m+\frac{11}{2}n+\frac{3}{2}+1=\frac{3}{2}mn+\frac{9}{2}m+\frac{11}{2}n+\frac{5}{2}$. Berdasarkan nilai d dan a, terbukti bahwa graf generalized fan $F_{m,n}$ dengan $m \ge 3$ dan $n \ge 2$, terdapat pelabelan $(\frac{3}{2}mn + \frac{9}{2}m + \frac{11}{2}n + \frac{5}{2}, 1) - C_3$ -anti ajaib super untuk n ganjil.

Kasus 2. Untuk n genap. Misalkan fungsi bijektif $\xi_2:V(G)\cup E(G)\to \{1,2,3,\ldots,mn+m+2n-1\}$ dengan $\xi_2(V(G))=\{1,2,3,\ldots,m+n+1\}$. Definisikan pelabelan ξ_2 untuk melabeli setiap titik dan sisi dari graf generalized fan $F_{m,n}$ sebagai berikut.

$$\xi_{2}(u_{i}) = n + i, & i \in [1, m], \\
\xi_{2}(v_{j}) = \begin{cases} \frac{n+1+j}{2}, & j \text{ ganjil, } j \in [1, n], \\
\frac{j}{2}, & j \text{ genap, } j \in [1, n], \\
j \text{ genap, } j \in [1, n], \\
j \text{ genap, } j \in [1, n], \\
j \in [1, n-1], & j \text{ ganjil, } i \in [1, m], \\
\frac{nm}{2} + \frac{(j+2)m}{2} + n + 1 - i, & j \text{ genap, } i \in [1, m].
\end{cases}$$
(2.2)

Berdasarkan pelabelan (2.2) bobot $\omega(C_3^i)$ dengan $i \in [1, m]$ pada graf generalized fan $F_{m,n}$ diperoleh dengan menjumlahkan label setiap titik dan sisi dalam subgraf C_3^i sebagai berikut.

$$\begin{array}{lll} \omega(C_3^i) & = & \xi_2(u_i) + \sum_{k=j}^{j+1} \xi_2(v_k) + \xi_2(v_j v_{j+1}) + \sum_{k=j}^{j+1} \xi_2(u_i v_k) \\ & = & n+i + \frac{n+1+j}{2} + \frac{j+1}{2} + mn + m + 2n - j + \frac{j+1}{2}m + n + i + \frac{mn}{2} + \frac{j+3}{2}m \\ & & + n+1-i \\ & = & \frac{3}{2}mn + 3m + jm + \frac{11}{2}n + 2 + i. \end{array}$$

Dapat diperiksa bahwa untuk setiap $j \in [1, n-1]$ dan $i \in [1, m]$ bobot $\omega(C_3^i)$ untuk j=2merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [m+1,2m]$, begitu juga untuk $j=3,4,\ldots,n-1$ merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [2m+1,(n-1)m]$. Atau dapat dituliskan untuk $i \in [1, (n-1)m]$ bobot pada C_3^i adalah $\omega(C_3^i) = \frac{3}{2}mn + 4m + \frac{11}{2}n + 2 + i$.

Nilai d dapat diperoleh dari selisih $\omega(C_3^i)$ dengan $\omega(C_3^{i+1})$ yaitu, $d=\omega(C_3^{i+1})-\omega(C_3^i)=(\frac{3}{2}mn+4m+\frac{11}{2}n+2+i+1)-(\frac{3}{2}mn+4m+\frac{11}{2}n+2+i)=1$ dan nilai a dapat diperoleh dari $\omega(C_3^i)$ untuk i=1 yaitu, $a=\omega(C_3^1)=\frac{3}{2}mn+4m+\frac{11}{2}n+2+1=\frac{3}{2}mn+4m+\frac{11}{2}n+3$. Berdasarkan nilai d dan a, terbukti bahwa graf generalized fan $F_{m,n}$ dengan $m \geq 3$ dan $n \geq 2$, terdapat pelabelan $(\frac{3}{2}mn+4m+\frac{11}{2}n+3,1)-C_3$ -anti ajaib super untuk n genap. \square

Teorema 2.4. Misal G adalah graf generalized fan $F_{m,n}$ dengan m ganjil ≥ 3 dan $n \geq 2$, maka terdapat pelabelan

- (1) $(mn + \frac{9}{2}m + \frac{11}{2}n + 3, 2) C_3$ -total anti ajaib super untuk n ganjil; dan (2) $(mn + \frac{9}{2}m + \frac{11}{2}n + \frac{7}{2}, 2) C_3$ -total anti ajaib super untuk n genap.

Bukti. Diketahui G adalah graf generalized fan $F_{m,n}$ dengan m ganjil ≥ 3 dan $n \geq 2$. Teorema 2.4 dibuktikan menjadi 2 kasus.

6

Kasus 1. Untuk n ganjil.

Misalkan fungsi bijektif $\xi_1: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., mn + m + 2n - 1\}$ dengan $\xi_1(V(G)) = \{1, 2, 3, ..., m + n + 1\}$. Definisikan pelabelan ξ_1 untuk melabeli setiap titik dan sisi dari graf generalized fan $F_{m,n}$ sebagai berikut.

$$\xi_{1}(u_{i}) = n+i, \qquad i \in [1, m],$$

$$\xi_{1}(v_{j}) = \begin{cases} \frac{n+j}{2}, & j \text{ ganjil}, j \in [1, n], \\ \frac{j}{2}, & j \text{ genap}, j \in [1, n], \end{cases}$$

$$\xi_{1}(v_{j}v_{j+1}) = mn+m+2n-j, \qquad j \in [1, n-1], \qquad (2.3)$$

$$\xi_{1}(u_{i}v_{j}) = \begin{cases} jm+n+\lceil \frac{i}{2} \rceil, & i \text{ dan } j \text{ ganjil atau} \\ i \text{ dan } j \text{ genap}, & i \text{ dan } j \text{ lainnya}. \end{cases}$$

$$\xi_{1}(u_{i}v_{j}) = \begin{cases} jm+n+\lceil \frac{i}{2} \rceil, & i \text{ dan } j \text{ genap}, \\ jm+n+\frac{m+1}{2}+\lceil \frac{i}{2} \rceil, & i \text{ dan } j \text{ lainnya}. \end{cases}$$

Berdasarkan pelabelan (2.3) bobot $\omega(C_3^i)$ dengan $i \in [1, m]$ pada graf generalized fan $F_{m,n}$ diperoleh dengan menjumlahkan label setiap titik dan sisi dalam subgraf C_3^i sebagai berikut.

$$\begin{array}{lll} \omega(C_3^i) & = & \xi_1(u_i) + \sum_{k=j}^{j+1} \xi_1(v_k) + \xi_1(v_j v_{j+1}) + \sum_{k=j}^{j+1} \xi_1(u_i v_k) \\ & = & n+i+\frac{n+j}{2} + \frac{j+1}{2} + mn + m + 2n - j + jm + n + \frac{i+1}{2}(j+1)m + n \\ & & + \frac{m+1}{2} + \frac{i+1}{2} - 1 \\ & = & mn + \frac{5}{2}m + 2jm + \frac{11}{2}n + 1 + 2i. \end{array}$$

Dapat diperiksa bahwa untuk setiap $j \in [1, n-1]$ dan $i \in [1, m]$ bobot $\omega(C_3^i)$ untuk j=2 merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [m+1, 2m]$, begitu juga untuk $j=3, 4, \ldots, n-1$ merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [2m+1, (n-1)m]$. Atau dapat dituliskan untuk $i \in [1, (n-1)m]$ bobot C_3^i adalah $\omega(C_3^i) = mn + \frac{9}{2}m + \frac{11}{2}n + 1 + 2i$.

merupakan ianjuran $\omega(C_3)$ imituk $i\in[2m+1,m]$ 1,000 $i\in[1,(n-1)m]$ bobot C_3^i adalah $\omega(C_3^i)=mn+\frac{9}{2}m+\frac{11}{2}n+1+2i.$ Nilai d dapat diperoleh dari selisih $\omega(C_3^i)$ dengan $\omega(C_3^{i+1})$ yaitu, $d=\omega(C_3^{i+1})-\omega(C_3^i)=(mn+\frac{9}{2}m+\frac{11}{2}n+1+2(i+1))-(mn+\frac{9}{2}m+\frac{11}{2}n+1+2i)=2$ dan nilai d dapat diperoleh dari $\omega(C_3^i)$ untuk i=1 yaitu, $a=\omega(C_3^1)=mn+\frac{9}{2}m+\frac{11}{2}n+1+2=mn+\frac{9}{2}m+\frac{11}{2}n+3.$ Berdasarkan nilai d dan d terbukti bahwa graf d generalized fan d dengan d ganjil d dan d terbukti bahwa graf d generalized fan d dengan d ganjil d dan d terbukti bahwa graf d generalized fan d ganjil super untuk d ganjil.

Kasus 2. Untuk n genap.

Misalkan fungsi bijektif $\xi_2: V(G) \cup E(G) \to \{1, 2, 3, ..., mn + m + 2n - 1\}$ dengan $\xi_2(V(G)) = \{1, 2, 3, ..., m + n + 1\}$. Definisikan pelabelan ξ_2 untuk melabeli setiap titik dan sisi dari graf generalized fan $F_{m,n}$ sebagai berikut.

$$\xi_{2}(u_{i}) = n + i, i \in [1, m],$$

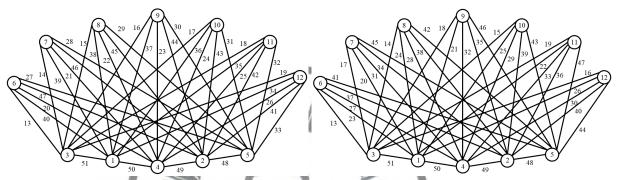
$$\xi_{2}(v_{j}) = \begin{cases} \frac{n+1+j}{2}, & j \text{ ganjil}, j \in [1, n], \\ \frac{j}{2}, & j \text{ genap}, j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \text{ genap}, j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \text{ genap}, j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], & j \in [1, n], \\ j \text{ genap}, j \in [1, n], \\$$

Berdasarkan pelabelan (2.4) bobot $\omega(C_3^i)$ dengan $i \in [1, m]$, pada graf generalized fan $F_{m,n}$ dapat diperoleh dengan menjumlahkan label setiap titik dan sisi dalam subgraf C_3^i sebagai berikut.

$$\begin{array}{rcl} \omega(C_3^i) & = & \xi_2(u_i) + \sum_{k=j}^{j+1} \xi_2(v_k) + \xi_2(v_j v_{j+1}) + \sum_{k=j}^{j+1} \xi_2(u_i v_k) \\ & = & n + i + \frac{n+1+j}{2} + \frac{j+1}{2} + mn + m + 2n - j + jm + n + \frac{i+1}{2}(j+1)m + n \\ & & + \frac{m+1}{2} + \frac{i+1}{2} - 1 \\ & = & mn + \frac{5}{2}m + 2jm + \frac{11}{2}n + \frac{3}{2} + 2i. \end{array}$$

Dapat diperiksa bahwa untuk setiap $j \in [1, m]$ dan $i \in [1, m]$ bobot $\omega(C_3^i)$ untuk j = 2 merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [m+1, 2m]$, begitu juga untuk $j = 3, 4, \ldots, n-1$ merupakan lanjutan $\omega(C_3^i)$ untuk $i \in [2m+1, (n-1)m]$. Atau dapat dituliskan untuk $i \in [1, (n-1)m]$ bobot pada C_3^i adalah $\omega(C_3^i) = mn + \frac{9}{2}m + \frac{11}{2}n + \frac{3}{2} + 2i$.

Contoh dari $(\frac{3}{2}mn + \frac{9}{2}m + \frac{11}{2}n + \frac{5}{2}, 1) - C_3$ -anti ajaib super pada $F_{m,n}$ dan $(mn + \frac{9}{2}m + \frac{11}{2}n + 3, 2) - C_3$ -anti ajaib super pada $F_{m,n}$ dengan m = 7 dan n = 5 dapat dilihat pada Gambar 3.



Gambar 3. $(114,1) - C_3$ -anti ajaib super pada graf $F_{7,5}$ (kiri) dan $(97,2) - C_3$ -anti ajaib super pada graf $F_{7,5}$ (kanan)

3. Kesimpulan

Berdasarkan pembahasan dapat diambil kesimpulan sebagai berikut.

- (1) Pelabelan $(a, d) C_3$ —anti ajaib super pada graf bunga matahari SF_n dibuktikan pada Teorema 2.1 untuk d = 1.
- (2) Pelabelan $(a,d) C_3$ —anti ajaib super pada graf broken fan BF(m,n) dibuktikan pada Teorema 2.2 untuk d=1.
- (3) Pelabelan $(a, d) C_3$ -anti ajaib super pada graf generalized fan $F_{m,n}$ dibuktikan pada Teorema 2.3 untuk d = 1 dan d = 2 pada Teorema 2.4.

DAFTAR PUSTAKA

- Gallian, J. A., A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 17 (2014), 1–308 #DS6.
- 2. Chopra, D., S. M. Lee, and H. H. Su, On Edge-Balance Index Sets of Fans and Broken Fans, Congressus Numerantium, 196 (2009), 183–201.
- 3. Hartsfield, N. and G. Ringel, Pearls in Graph Theory, Academic Press, (1990).
- 4. Inayah, N., Pelabelan Selimut (a,d)-H-Anti Ajaib pada Beberapa Kelas Graf, Disertasi, Institut Teknologi Bandung, Bandung, 2013.
- 5. Intaja, S. and T. Sitthiwirattham, Some Graph Parameters of Fan Graph, International Journal of Pure and Applied Mathematics, 80 (2012), no. 2, 217–223.
- 6. Karyanti, Pelabelan Selimut (a,d)-H-Anti Ajaib Super pada Graf Fan, Sun, dan Generalized Petersen, Skripsi, Universitas Sebelas Maret, Surakarta, 2012.
- 7. Maryati, T. K., Karakteristik Graf H-Ajaib dan Graf H-Ajaib Super, Disertasi, Institut Teknologi Bandung, Bandung, 2011.
- 8. Inayah, N., A. N. M. Salman, and R. Simanjuntak, On (a,d) H-Antimagic Coverings of Graphs, J. Combin. Math. Combin. Comput., 71 (2009), 273–281.
- Roswitha, M. and E.T. Baskoro, H-Magic Covering on Some Classes of Graphs, AIP Conference Proceeding on ICREM5, 1450 (2012), 135–138.

commit to user