ON THE PARTITION DIMENSION OF A LOLLIPOP GRAPH, A GENERALIZED JAHANGIR GRAPH, AND A $C_{n} *_{2} K_{m}$ GRAPH

Maylinda Purna Kartika Dewi and Tri Atmojo Kusmayadi
Department of Mathematics
Faculty of Mathematics and Natural Sciences
Sebelas Maret University

Abstract

Let G be a connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. The vertex set $V(G)$ is divided into some partitions, which are $S_{1}, S_{2}, \ldots, S_{k}$. For every vertex $v \in V(G)$ and an ordered k-partition $\Pi=$ $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, the representation of v with respect to II is $r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right)\right.$, $\left.\ldots, d\left(v, S_{k}\right)\right)$, where $d\left(v, S_{i}\right)$ represents the distance of the vertex v to each partition in Π. The set Π is said to be resolyed partition of M f the representation $r(v \mid \Pi)$ are distinct, for every vertex vin G. The minimum eardinality of resolving k-partition of $V(G)$ is called the partition dimension of G, denoted by $p a(G)$. In this research, we determine the partition dimension of a lonlipop graph $L_{m, n}$, a genevatized Jahangir graph $J_{m, n}$, and a $C_{n} *_{2} K_{m}$ graph. Keywords: graph, $C_{n} *_{2}$

The partition dimension of a graph was introduced by Chartrand et al. [2] in 1998. There is another concept of metric cimension form. We assume that G is a graph with a vertex set $V(G)$, such that $V(G)$ can be divided into any partition set S. The set Π with $S \in \Pi$ is a resolving partition of G if for each vertex in G has distinct representation with respect to Π, and Π is an ordered k-partition. The minimum cardinality of resolving k-partitions of $V(G)$ is called a partition dimension of G, denoted by $\operatorname{pd}(G)$.

Many researchers have conducted research in determining the partition dimension for specific graph classes. Tomescu et al. [9] in 2007 found the partition dimension of a wheel graph. Javaid and Shokat [6] in 2008 determined the partition dimension of some wheel related graphs, such as a gear graph, a helm graph, a sunflower graph, and a friendship graph. Asmiati [1] in 2012 investigated the partition dimension of a star amalgamation. Hidayat [5] in 2015 determined the partition dimension of some graph classes, they are a (n, t) - kite graph, a barbell graph, a double cones graph, and a $K_{1}+\left(P_{m} \odot K_{n}\right)$ graph. Danisan $[4]$ in 2015 found the partition dimension of a flower graph, a 3-fold wheel graph, and a $\left(K_{m} \times P_{n}\right) \odot K_{1}$. Puspitaningrum [8] in 2015 also found the partition dimension of a closed helm graph, a $W_{n} \times P_{m}$ graph,
and a $C_{m} \odot K_{1, n}$ graph. In this research, we determine the partition dimension of a lollipop graph, a generalized Jahangir graph, and a $C_{n} *_{2} K_{m}$ graph.

2. Partition Dimension

The following definition and lemma were given by Chartrand et al. [3]. Let G be a connected graph. For a subset S of $V(G)$ and a vertex v of G, the distance $d(v, S)$ between v and S is defined as $d(v, S)=\min \{d(v, x) \mid x \in S\}$. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G \operatorname{and} /$ vertex v of G, the representation of v with respect to Π is definedes the k - vector $r(v i t) \Rightarrow\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. The partition Π is called arsolving partition if vectors $r(v \mid \Pi), v \in V(G)$ are distinct. The minimum for which there is a resolving k-partition of $V(G)$ is called the partition dimension of a, denoted by $p d t\left(G^{4}\right)$.
Lemma 2.1.
(1) $p d(G)=2$
(2) $p d(G)=n$ if and only if $G=K_{n}$, and
(3) $p d(G)=3$ if $G=n$-cycle

Lemma 2.2. Let Π be a resolving partition of $V(G)$ and $u, v \in V(G)$. If $d(u, w)=$ $d(v, w)$ for all $w \in V(G)-\{u, v\}$, then u and v belong to distinct elements of Π.

Proof. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, where u and v belong to the same element, say S_{i}, of Π. Then $d\left(u, S_{i}\right)=d\left(v, S_{i}\right)=0$. Since $d(u, w)=d(v, w)$ for all $w \in V(G)-\{u, v\}$, we also have that $d\left(u, S_{j}\right)=d\left(v, S_{j}\right)$ for all j, where $1 \leq j \neq i \leq k$. Therefore, $r(u \mid \Pi)=r(v \mid \Pi)$ and Π is not a resolving partition.

3. The Partition Dimension of a Lollipop Graph

Weisstein [10] defined the lollipop graph $L_{m, n}$ for $m \geq 3$ as a graph obtained by joining a complete graph K_{m} to a path P_{n} with a bridge.
Theorem 3.1. Let $L_{m, n}$ be a lollipop graph with $m \geq 3$ and $n \geq 1$, then

$$
p d\left(L_{m, n}\right)=m .
$$

Proof. Let $V\left(L_{m, n}\right)=V\left(K_{m}\right) \cup V\left(P_{n}\right)$, where $V\left(K_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m-1}, v_{m}\right\}$ and $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right\}$. Take a vertex $v \in V\left(K_{m}\right)$ such that v is adjacent to $u \in V\left(P_{n}\right)$. Based on Lemma 2.1.1 and Lemma 2.1.2, the partition dimension of $L_{m, n}$ is $p d\left(L_{m, n}\right) \geq m$. Next, we show that the partition dimension of $L_{m, n}$ is $p d\left(L_{m, n}\right)=m$. For each $v, u \in V\left(L_{m, n}\right)$, let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be the resolving
partition where $S_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq m-1$ and $S_{m}=\left\{v_{m}, u_{1}, \ldots, u_{n}\right\}$. We obtain the representation between all vertices of $V\left(L_{m, n}\right)$ with respect to Π as follows $r\left(v_{m} \mid \Pi\right)=\left(d\left(v_{1}, S_{i}\right), \ldots, d\left(v_{m}, S_{i}\right)\right)$ and $r\left(u_{n} \mid \Pi\right)=(n, n+1, n+1, \ldots, n+1,0)$ where

$$
d\left(v_{m}, S_{i}\right)= \begin{cases}0, & \text { for } S_{i} \in \Pi \text { with } i=m \\ 1, & \text { for } S_{i} \in \Pi \text { with } i \neq m\end{cases}
$$

Therefore, for each vertex $v \in V\left(L_{m}, n\right)$ has a distinct representation with respect to Π. Now, we show that the cardinality of Π is m. The cardinality of Π is the number of k-partition in S_{i} and S_{m} forphofis m - 1. The number of k-partition in S_{i} for $1 \leq i \leq m-1$, is $n 2-1$. The numbery of k-partition in S_{m} is 1 , so we have $|\Pi|=(m-1)+1 e-m$. Furthermore, $\amalg\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ is a resolving partition of $L_{m, n}$ with menents. Hence, the partition dimension of lollipop graph is $p d\left(L_{m, n}\right)=m$.

4. The Partition Dimension or a Generanzzed Jahangir Graph

Mojdeh and Ghameshloum]defined the generatized Jahangir graph $J_{m, n}$ with $n \geq 3$ as a graph on $n m+1$ vertices consisting of a cycle $C_{m n}$ and one additional vertex which is adjacent to n vertices of $C_{m n}$ at m distance to each other on $C_{m n}$. Let $V\left(J_{m, n}\right)=V\left(C_{m n}\right) \cup\left\{\boldsymbol{u}_{1}\right\}$ or $V\left(J_{m, n}\right)=V\left(P_{m}\right) \cup V\left(W_{n}\right)$ where $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n(m-1)}\right\}$ and $V\left(W_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n+1}\right\}$, we have $V\left(J_{m, n}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{n+1}, v_{1}, v_{2}, \ldots, v_{n(m-1)}\right\}$ with $m, n \in \mathbb{N}$.

Lemma 4.1. Let G be a subgraph of a generalized Jahangir graph $J_{m, n}$ for $m \geq 3$, $n \geq 3$ and Π is a resolving partition of G. The distance of vertex u_{1} to the other vertices are $d\left(u_{1}, u_{i}\right)=1$ and $d\left(u_{1}, v_{k}\right)=2$ for $1<i \leq n+1$ and $1 \leq k \leq n(m-1)$. The distance of vertex u to the other vertex u are same, $d\left(u_{i}, u_{j}\right)=2$ for $1<i \leq$ $n+1,1<j \leq n+1$ and $i \neq j$.

Proof. Let u_{1} be a central vertex of $V(G)=V\left(J_{m, n}\right)$. Since for each vertex u_{i} is connected with central vertex, so $d\left(u_{1}, u_{i}\right)=1$ and $d\left(u_{i}, u_{j}\right)=2$ with $1<i \leq n+1$, $1<j \leq n+1$, and $i \neq j$. If vertex v_{k} is vertex of path P_{m} and has minimum distance of vertex u_{i}, then $d\left(u_{1}, v_{k}\right)=2$ for $1 \leq k \leq n(m-1)$.

Theorem 4.1. Let $J_{m, n}$ be a generalized. Jahangir graph for $m \geq 3$ and $n \geq 3$ then

$$
p d\left(J_{m, n}\right)= \begin{cases}3, & \text { for } n=3,4,5 \\ \left\lfloor\frac{n}{2}\right\rfloor+1, & \text { for } n \geq 6\end{cases}
$$

Proof. Let $J_{m, n}$ be a generalized Jahangir graph for $m \geq 3, n \geq 3$ and a vertex set $V\left(J_{m, n}\right)$. The proof can be divided into two cases according to the values of n.
(1) Case $n=3,4,5$
(a) For $n=3$

Let $a=\left\{v_{1}, \ldots, v_{m}\right\}, b=\left\{v_{1}, \ldots, v_{m-1}\right\}, c=\left\{v_{m+1}, \ldots, v_{n(m-1)}\right\}$, and $d=\left\{v_{m}, \ldots, v_{2(m-1)}\right\}$, then
(b)

$$
S_{1}=\left\{\begin{array}{ll}
a, & \text { for } m=3 ; \\
b, & \text { for } m=5 ; \\
c, & \text { for } m \geq 4, m \neq 5 ;
\end{array} \quad S_{2}= \begin{cases}d, & \text { for } m=3 \\
e, & \text { for } m=9 \\
f, & \text { for } m \geq 4, m \neq 9\end{cases}\right.
$$

$$
S_{3}= \begin{cases}g, & \text { for } m=3 \\ h, & \text { for } m=5 \\ i, & \text { for } m \geq 4, m \neq 5,9 \\ j, & \text { for } m=9\end{cases}
$$

For $n=5$ is same as above. The representations of $r(u \mid \Pi)$ and $r(v \mid \Pi)$, with $u, v \in V\left(J_{m, n}\right)$ are

$$
\begin{array}{cll}
r\left(u_{1} \mid \Pi\right)=(0,2,2), & r\left(u_{2} \mid \Pi\right)=(0,1,3), & r\left(u_{3} \mid \Pi\right)=(0,1,1), \\
r\left(u_{n} \mid \Pi\right)=(0,3,1), & r\left(v_{1} \mid \Pi\right)=(1,0,4), & r\left(v_{2} \mid \Pi\right)=(2,0,5), \\
\ldots, & r\left(v_{n(m-1)-1} \mid \Pi\right)=(0,3,5), & r\left(v_{n(m-1)} \mid \Pi\right)=(0,2,4) .
\end{array}
$$

So the representation of $r(u \mid \Pi)$ and $r(v \mid \Pi)$ are distinct and we conclude that Π is a resolving partition of $J_{m, n}$ with 3 elements. Furthermore, we prove that there is no resolving partition with 2 elements. Suppose that $J_{m, n}$ has a resolving partition with 2 elements, $\Pi=\left\{S_{1}, S_{2}\right\}$. Based on Lemma 4.1, it is a contradiction. Therefore, $J_{m, n}$ has no a resolving
partition with 2 elements. Thus, the partition dimension of $J_{m, n}$ is $p d\left(J_{m, n}\right)=3$ for $n=3,4,5$.
(2) Case $n \geq 6$.

Let $\Pi=\left\{S_{1}, S_{i}\right\}$ be a resolving partition of $J_{m, n}$ where $S_{1}=\left\{u_{i}, v_{j}\right\}$, for $1 \leq i \leq n+1,1 \leq j \leq n(m-1)$ and $S_{i}=\left\{v_{k}\right\}$, for $1<i \leq\left\lfloor\frac{n}{2}\right\rfloor+1,1 \leq k \leq$ $n(m-1), k \neq j$. The representation for each vertex on $J_{m, n}$ with respect to Π as follows

Since for each vere of $J_{m, n}$ has a distinct rempesentation with respect to Π, so Π is a resolving partition of $J_{m, n}$ with $\left\lfloor\frac{n}{2}+1\right.$ elements.

Next, we show that the cardinality of Π is $\left\lfloor\frac{n}{2}\right\rfloor 1$. The cardinality of Π is the number of k-partition in S_{1} and S_{i} for $1<i \leq\left\lfloor\frac{n}{2}\right\rfloor$. The number of k-partition in S_{1} is 1 . The mumber of kepartition in S_{i} for $1<i \leq\left\lfloor\frac{n}{2}\right\rfloor$ is $\left\lfloor\frac{n}{2}\right\rfloor$. We obtain $|\Pi|=1+\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor+1$. Therefore, $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\}$ is a resolving partition of $J_{m, n}$.

We show that $J_{m, n}$ has no $p d\left(J_{m, n}\right)<\left\lfloor\frac{n}{2}\right\rfloor+1$. We may assume that Π is a resolving partition of $J_{m, n}$ where $p d\left(J_{m, n}\right)<\left\lfloor\frac{n}{2}\right\rfloor+1$. So, for each vertex $v \in V\left(J_{m, n}\right)$ has a distinct representation $r\left(v_{i} \mid \Pi\right)$ and $r\left(v_{j} \mid \Pi\right)$. If we select $\Pi=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ as a resolving partition then there is a partition class containing any 2 vertices of v_{j}. By using Lemma 4.1, the distance of vertex u_{1} to the others have the same distance, and $r\left(v_{i} \mid \Pi\right)=r\left(v_{j} \mid \Pi\right)$. It is a contradiction. Hence, the partition dimension of $J_{m, n}$ is $\operatorname{pd}\left(J_{m, n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ for $n \geq 6$.

5. The Partition Dimension of a $C_{n} *_{2} K_{m}$ Graph

$C_{n} *_{2} K_{m}$ graph with $n \geq 3$ and $m \geq 2$ is a graph obtained from edge amalgamation, which combine an edge of \mathcal{C}_{n}^{t} andean edge of K_{m} to be one incident edge with vertex x and y. Vertex x and y also as owned by C_{n} and K_{m}. Let $\frac{V\left(C_{n} *_{2} K_{m}\right)=A \cup B \cup\{x\} \cup\{y\} \text { with } A \in V\left(C_{n}\right) \backslash\left\{u_{1}, u_{2}\right\} \text { and } B \in V\left(K_{m}\right) \backslash\left\{v_{1}, v_{2}\right\} .}{5}$.

A vertex set $A=\left\{u_{3}, u_{4}, \ldots, u_{n}\right\}$ and $B=\left\{v_{3}, v_{4}, \ldots, v_{m}\right\}$, vertex $x=u_{1} * v_{1}$ and $y=u_{2} * v_{2}$, so $V\left(C_{n} *_{2} K_{m}\right)=\left\{x, y, u_{3}, u_{4}, \ldots, u_{n}, v_{3}, v_{4}, \ldots, v_{m}\right\}$.
Lemma 5.1. Let G be a subgraph of $C_{n} *_{2} K_{m}$ graph for $n \geq 3, m \geq 2$ and Π is a resolving partition of G. Then the distance of vertex x and y to vertex v_{i} are $d\left(x, v_{i}\right)=d\left(y, v_{i}\right)=1$ for $3 \leq i \leq m$. Furthermore, x and y belong to distinct elements of Π.

Proof. Let $\Pi=\left\{S_{1}, S_{2}, \ldots S_{m}\right\}$ be-a resolving partition of G and $x, y, v_{i} \in G$. Since vertex $x, y, v_{i} \in V\left(K_{m}\right)$ with $3 \leq i \leq m$, so the distance of vertex x and y to vertex v_{i} are $d\left(x, v_{i}\right)=d\left(y, v_{i}\right)=1$ fon $\leqslant \boldsymbol{i} \$$ mbsased ondemma 2.2 then vertex x and y belong to distinct elements of II.

Theorem 5.1. and K_{m} for $n \geq$

Proof. Let $C_{n} *_{2} K_{m}$ be a graph of resulting an edge amalgamation for $n \geq 3$ and $m \geq 2$. A vertex set $\left(G_{n} *_{2} K_{m}\right)$ where (x, y) are joining edge among edge $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$. The proof can bedivided into two cases based on the values of m.
(1) Case $m=2,3,4$.

According to Lemma 2.1, the partition dimensions of $C_{n} *_{2} K_{m}$ are $p d\left(C_{n} *_{2}\right.$ $\left.K_{m}\right) \neq 2$ and $p d\left(C_{n} *_{2} K_{m}\right) \geq 3$.
(a) We prove that $p d\left(C_{n} *_{2} K_{m}\right) \neq 2$. Based on Lemma 2.1.1, $p d(G)=2$ if and only if $G=P_{n}$. Since $C_{n} *_{2} K_{m}$ cannot be formed be a path, then $p d\left(C_{n} *_{2} K_{m}\right) \neq 2$.
(b) We show that the partition dimension of $C_{n} *_{2} K_{m}$ is $p d\left(C_{n} *_{2} K_{m}\right)=3$. For each $v \in V\left(C_{n} *_{2} K_{m}\right)$, let $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ be the resolving partition where $S_{1}=\left\{x, v_{3}\right\}, S_{2}=\left\{y, v_{4}\right\}$, and $S_{3}=\left\{u_{3}, \ldots, u_{n}\right\}$. We obtain the representation between all vertices of $V\left(C_{n} *_{2} K_{m}\right)$ with respect to Π as follows

$$
\begin{aligned}
& r(x \mid \Pi)=(0,1,1), \quad r(y \mid \Pi)=(1,0,1), \quad r\left(u_{j} \mid \Pi\right)=\left(d\left(u_{j}, x\right), d\left(u_{j}, y\right), 0\right), \\
& r\left(v_{3} \mid \Pi\right)=(0,1,2), \quad r\left(v_{4} \mid \Pi\right)=(1,0,2), \\
& \text { for } 3 \leq j \leq n \text { with } d\left(u_{j}, x\right), d\left(u_{j}, y\right) \leq\left\lfloor\frac{n}{2}\right\rfloor . \text { Clearly that } r(x \mid \Pi) \neq \\
& r(y \mid \Pi) \neq r\left(u_{3} \mid \Pi\right) \neq \ldots \neq r\left(u_{n} \mid \Pi\right) \neq r\left(v_{3} \mid \Pi\right) \neq \ldots \neq r\left(v_{m} \mid \Pi\right), \text { and then } \\
& \text { the partition dimension of } C_{n} *_{2} K_{m} \text { is } p d\left(C_{n} *_{2} K_{m}\right)=3 .
\end{aligned}
$$

(2) Case $m \geq 5$.

Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{m-1}\right\}$ be a resolving partition of $C_{n} *_{2} K_{m}$ where $S_{1}=$ $\left\{x, v_{3}\right\}, S_{2}=\left\{y, v_{4}\right\}, S_{3}=\left\{u_{3}, \ldots, u_{n}\right\}$, and $S_{i}=\left\{v_{i+1}\right\}$, with $3<i \leq m-1$.

The representations of each vertex of $C_{n} *_{2} K_{m}$ with respect to Π are

$$
\begin{array}{cc}
r(x \mid \Pi)=(0,1,1, \ldots, 1), & r(y \mid \Pi)=(1,0,1, \ldots, 1), \\
r\left(u_{3} \mid \Pi\right)=\left(2,1,0, \ldots, d\left(u_{3}, v_{i}\right)\right), & \ldots, \\
r\left(u_{n} \mid \Pi\right)=\left(1,2,0, \ldots, d\left(u_{n}, v_{i}\right)\right), & r\left(v_{3} \mid \Pi\right)=(0,1,2, \ldots, 1), \\
\ldots, & r\left(v_{m} \mid \Pi\right)=(1,0,2, \ldots, 1),
\end{array}
$$

with $d\left(u_{3} \mid \Pi\right), \ldots, d\left(u_{n} \mid \Pi\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$. Therefore, for each vertex $v \in V\left(C_{n} *_{2} K_{m}\right)$ has a distinct representation with respect to Π. So, the $C_{n} *_{2} K_{m}$ graph has a resolving partition with $m-1$ elements. Next, we show that the cardinality of Π is $m-1$. The cardinality of Π is the number of k-partition in S_{1}, S_{2}, S_{3} and S_{i} for $3<\leq m$. The numbey of k-partition in S_{1}, S_{2} and S_{3} are 1. The number of $k-$ parition in S_{i} is $m-4$, so $\Pi \mid=1+1+1+(m-4)=m-1$. Therefore, $\Pi=\left\{S_{n} S_{2}, \ldots, S_{m-1}\right\}$ is a resolving partition of $C_{n} *_{2} K_{m}$.

We show that $G_{r} *_{2} K_{m}$ has no resolving paxition with $m-2$ elements. Assume II is a resting partition of $C_{n} *_{2} K_{m}$ with $p d\left(C_{n} *_{2} K_{m}\right)<m-1$ then for each vertex $v \in\left(C_{n} *_{2} K_{m}\right)$ has distinctrepresentation. If we choose $\Pi=\left\{S_{1}, S_{2} \ldots, S_{2}\right\}$ as a resolving partitiont hen one of the partition class contains 2 vertices v, By using Lemina 5.1 , the distance of vertex x and y to vertex v_{i}, must be the same distance, and then vertex x and y belong to distinct of partitionclass. As a result, we have the same representation $r(x \mid \Pi)=r(y \mid \Pi)$, a contradiction. So the partition dimension of $C_{n} *_{2} K_{m}$ is $p d\left(C_{n} *_{2} K_{m}\right)=m-1$ for $m \geq$

6. Conclusion

According to the discussion above it can be concluded that the partition dimension of a lollipop graph $L_{m, n}$, a generalized Jahangir graph $J_{m, n}$, and a $C_{n} *_{2} K_{m}$ graph are as stated in Theorem 3.1, Theorem 4.1, and Theorem 5.1, respectively.

References

[1] Asmiati, Partition Dimension of Amalgamation of Stars, Bulletin of Mathematics Vol 04 no. 2 (2012), 161-167.
[2] Chartrand, G., E. Salehi, and P. Zhang, On the Partition Dimension of a Graph, Congressus Numerantium Vol. 131 (1998), 55-66.
[3] Chartrand, G., E. Salehi, and P. Zhang, The Partition Dimension of a Graph, Aequation Math. Vol. 55 (2000), 45-54. commit to user
[4] Danisa, O. L., Dimensi Partisi pada Graf Flower, Graf 3-Fold Wheel, dan Graf $\left(K_{m} \times P_{n}\right) \odot$ K_{1}, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.
[5] Hidayat, D. W., Dimensi Partisi pada Beberapa Kelas Graf, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.
[6] Javaid, I., and S. Shokat, On the Partition Dimension of Some Wheel Related Graph, Prime Research in Mathematics Vol. 4 (2008), 154-164.
[7] Mojdeh, D. A., and A. N. Ghameshlou, Domination in Jahangir Graph J $J_{2, m}$, Int. J. Contemp. Math. Sciences Vol. 2(24) (2007), 193199.
[8] Puspitaningrum, R. T., Dimensi Partisi pada Graf Closed Helm, Graf $W_{n} \times P_{m}$, dan Graf $C_{m} \odot K_{1, n}$, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.
[9] Tomescu, I.,: I. Javaid, and Slamin, On the Partition Dimension and Connected Partition Dimension of Wheels, Ars, Combinatolia Vol. 84 (2007), 311-317.
[10] Weisstein, E. W., CRC Concise Encyclopedia of Mathematics CD-ROM, $2^{\text {nd }}$ ed., CRC Press, Boca Raton, 2003.

