ON THE PARTITION DIMENSION OF A LOLLIPOP GRAPH, A GENERALIZED JAHANGIR GRAPH, AND A $C_n *_2 K_m$ GRAPH

Maylinda Purna Kartika Dewi and Tri Atmojo Kusmayadi

Department of Mathematics Faculty of Mathematics and Natural Sciences Sebelas Maret University

Abstract. Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_n\}$. The vertex set V(G) is divided into some partitions, which are S_1, S_2, \ldots, S_k . For every vertex $v \in V(G)$ and an ordered k-partition $\Pi = \{S_1, S_2, \ldots, S_k\}$, the representation of v with respect to Π is $r(v|\Pi) = (d(v, S_1), d(v, S_2), \ldots, d(v, S_k))$, where $d(v, S_i)$ represents the distance of the vertex v to each partition in Π . The set Π is said to be resolved partition of G if the representation $r(v|\Pi)$ are distinct, for every vertex v in G. The minimum cardinality of resolving k-partition of V(G) is called the partition dimension of G, denoted by pd(G). In this research, we determine the partition dimension of a hollipop graph $L_{m,n}$, a generalized Jahangir graph $J_{m,n}$, and a $C_n *_2 K_m$ graph.

Keywords: partition dimension, resolving partition, lollipop graph, generalized Jahangir graph, $C_n *_2 K_m$ graph

1. Introduction

The partition dimension of a graph was introduced by Chartrand et al. [2] in 1998. There is another concept of metric dimension form. We assume that G is a graph with a vertex set V(G), such that V(G) can be divided into any partition set S. The set Π with $S \in \Pi$ is a resolving partition of G if for each vertex in G has distinct representation with respect to Π , and Π is an ordered k-partition. The minimum cardinality of resolving k-partitions of V(G) is called a partition dimension of G, denoted by pd(G).

Many researchers have conducted research in determining the partition dimension for specific graph classes. Tomescu et al. [9] in 2007 found the partition dimension of a wheel graph. Javaid and Shokat [6] in 2008 determined the partition dimension of some wheel related graphs, such as a gear graph, a helm graph, a sunflower graph, and a friendship graph. Asmiati [1] in 2012 investigated the partition dimension of a star amalgamation. Hidayat [5] in 2015 determined the partition dimension of some graph classes, they are a (n,t) - kite graph, a barbell graph, a double cones graph, and a $K_1 + (P_m \odot K_n)$ graph. Danisa [4] in 2015 found the partition dimension of a flower graph, a 3-fold wheel graph, and a $(K_m \times P_n) \odot K_1$. Puspitaningrum [8] in 2015 also found the partition dimension of a closed helm graph, a $W_n \times P_m$ graph,

and a $C_m \odot K_{1,n}$ graph. In this research, we determine the partition dimension of a lollipop graph, a generalized Jahangir graph, and a $C_n *_2 K_m$ graph.

2. Partition Dimension

The following definition and lemma were given by Chartrand et al. [3]. Let G be a connected graph. For a subset S of V(G) and a vertex v of G, the distance d(v,S) between v and S is defined as $d(v,S) = min\{d(v,x)|x \in S\}$. For an ordered k-partition $\Pi = \{S_1, S_2, \ldots, S_k\}$ of V(G) and a vertex v of G, the representation of v with respect to Π is defined as the k-vector $r(v|\Pi) = (d(v,S_1), d(v,S_2), \ldots, d(v,S_k))$. The partition Π is called a resolving partition if the k-vectors $r(v|\Pi), v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G, denoted by pd(G).

Lemma 2.1. Let G be a connected graph, then

- (1) pd(G) = 2 if and only if $G = P_n$ for $n \ge 2$,
- (2) pd(G) = n if and only if $G = K_n$, and
- (3) pd(G) = 3 if G = n-cycle for $n \ge 3$.

Lemma 2.2. Let Π be a resolving partition of V(G) and $u, v \in V(G)$. If d(u, w) = d(v, w) for all $w \in V(G) - \{u, v\}$, then u and v belong to distinct elements of Π .

Proof. Let $\Pi = \{S_1, S_2, \dots, S_k\}$, where u and v belong to the same element, say S_i , of Π . Then $d(u, S_i) = d(v, S_i) = 0$. Since d(u, w) = d(v, w) for all $w \in V(G) - \{u, v\}$, we also have that $d(u, S_j) = d(v, S_j)$ for all j, where $1 \leq j \neq i \leq k$. Therefore, $r(u|\Pi) = r(v|\Pi)$ and Π is not a resolving partition.

3. The Partition Dimension of a Lollipop Graph

Weisstein [10] defined the lollipop graph $L_{m,n}$ for $m \geq 3$ as a graph obtained by joining a complete graph K_m to a path P_n with a bridge.

Theorem 3.1. Let $L_{m,n}$ be a lollipop graph with $m \geq 3$ and $n \geq 1$, then

$$pd(L_{m,n}) = m.$$

Proof. Let $V(L_{m,n}) = V(K_m) \cup V(P_n)$, where $V(K_m) = \{v_1, v_2, \dots, v_{m-1}, v_m\}$ and $V(P_n) = \{u_1, u_2, \dots, u_{n-1}, u_n\}$. Take a vertex $v \in V(K_m)$ such that v is adjacent to $u \in V(P_n)$. Based on Lemma 2.1.1 and Lemma 2.1.2, the partition dimension of $L_{m,n}$ is $pd(L_{m,n}) \geq m$. Next, we show that the partition dimension of $L_{m,n}$ is $pd(L_{m,n}) = m$. For each $v, u \in V(L_{m,n})$, let $\Pi = \{S_1, S_2, \dots, S_m\}$ be the resolving

partition where $S_i = \{v_i\}$ for $1 \le i \le m-1$ and $S_m = \{v_m, u_1, \dots, u_n\}$. We obtain the representation between all vertices of $V(L_{m,n})$ with respect to Π as follows $r(v_m|\Pi) = (d(v_1, S_i), \dots, d(v_m, S_i))$ and $r(u_n|\Pi) = (n, n+1, n+1, \dots, n+1, 0)$ where

$$d(v_m, S_i) = \begin{cases} 0, & \text{for } S_i \in \Pi \text{ with } i = m, \\ 1, & \text{for } S_i \in \Pi \text{ with } i \neq m. \end{cases}$$

Therefore, for each vertex $v \in V(L_{m,n})$ has a distinct representation with respect to Π . Now, we show that the cardinality of Π is m. The cardinality of Π is the number of k-partition in S_i and S_m for $1 \le i \le m-1$. The number of k-partition in S_m is 1, so we have $|\Pi| = (m-1) + 1 = m$. Furthermore, $\Pi = \{S_1, S_2, \ldots, S_m\}$ is a resolving partition of $L_{m,n}$ with m elements. Hence, the partition dimension of lollipop graph is $pd(L_{m,n}) = m$.

4. THE PARTITION DIMENSION OF A GENERALIZED JAHANGIR GRAPH

Mojdeh and Ghameshlou [7] defined the generalized Jahangir graph $J_{m,n}$ with $n \geq 3$ as a graph on nm+1 vertices consisting of a cycle C_{mn} and one additional vertex which is adjacent to n vertices of C_{mn} at m distance to each other on C_{mn} . Let $V(J_{m,n}) = V(C_{mn}) \cup \{u_1\}$ or $V(J_{m,n}) = V(P_m) \cup V(W_n)$ where $V(P_m) = \{v_1, v_2, \ldots, v_{n(m-1)}\}$ and $V(W_n) = \{u_1, u_2, \ldots, u_{n+1}\}$, we have $V(J_{m,n}) = \{u_1, u_2, \ldots, u_{n+1}, v_1, v_2, \ldots, v_{n(m-1)}\}$ with $m, n \in \mathbb{N}$.

Lemma 4.1. Let G be a subgraph of a generalized Jahangir graph $J_{m,n}$ for $m \geq 3$, $n \geq 3$ and Π is a resolving partition of G. The distance of vertex u_1 to the other vertices are $d(u_1, u_i) = 1$ and $d(u_1, v_k) = 2$ for $1 < i \leq n + 1$ and $1 \leq k \leq n(m - 1)$. The distance of vertex u to the other vertex u are same, $d(u_i, u_j) = 2$ for $1 < i \leq n + 1$, $1 < j \leq n + 1$ and $i \neq j$.

Proof. Let u_1 be a central vertex of $V(G) = V(J_{m,n})$. Since for each vertex u_i is connected with central vertex, so $d(u_1, u_i) = 1$ and $d(u_i, u_j) = 2$ with $1 < i \le n+1$, $1 < j \le n+1$, and $i \ne j$. If vertex v_k is vertex of path P_m and has minimum distance of vertex u_i , then $d(u_1, v_k) = 2$ for $1 \le k \le n(m-1)$.

Theorem 4.1. Let $J_{m,n}$ be a generalized Jahangir graph for $m \geq 3$ and $n \geq 3$ then

$$pd(J_{m,n}) = \begin{cases} 3, & \text{for } n = 3, 4, 5; \\ \lfloor \frac{n}{2} \rfloor + 1, & \text{for } n \ge 6. \end{cases}$$

Proof. Let $J_{m,n}$ be a generalized Jahangir graph for $m \geq 3$, $n \geq 3$ and a vertex set $V(J_{m,n})$. The proof can be divided into two cases according to the values of n.

(1) Case
$$n = 3, 4, 5$$

(a) For $n = 3$
Let $a = \{v_1, \dots, v_m\}$, $b = \{v_1, \dots, v_{m-1}\}$, $c = \{v_{m+1}, \dots, v_{n(m-1)}\}$, and $d = \{v_m, \dots, v_{2(m-1)}\}$, then $S_1 = \{u_1, \dots, u_{n+1}, v_{2m-1}, \dots, v_{mn-3}\}$, $S_2 = \begin{cases} a, & \text{for } m = 3; \\ b, & \text{for } m \ge 4. \end{cases}$
(b) For $n = 4$
Let $a = \{u_1, \dots, u_{n+2}, v_{2m}, u_{m-1}, u_{m-1}\}$, $c = \{u_1, \dots, u_{n+2}, v_{2m-1}, v_{3m-2}, \dots, v_{n(m-1)}\}$, $c = \{u_1, \dots, u_{n+2}, v_{2m-1}, v_{3m-2}, \dots, v_{n(m-1)}\}$, $c = \{u_1, \dots, v_{m-1}, v_{2m-1}, v_{3m-2}, \dots, v_{n(m-1)+1}\}$, $c = \{v_1, \dots, v_{m-1}, v_{2m-1}, v_{2m-1}, v_{2m-1}, \dots, v_{m-1)(m-1)-1}\}$, $c = \{v_1, \dots, v_{2m-1}, v_{2m-1}, \dots, v_{m-1)(m-1)-1}\}$, $c = \{v_m, \dots, v_{2(m-1)}, v_{2m-1}, \dots, v_{(m-1)(m-1)-1}\}$, $c = \{v_m, \dots, v_{2(m-1)}, v_{2m-1}, \dots, v_{(m-1)(m-1)-1}\}$, and $c = \{v_m, \dots, v_{2(m-1)}, v_{2m}, \dots, v_{2m-1}, v_{2m+3}, \dots, v_{(m-1)(m-1)-1}\}$ then $c = \begin{cases} a, & \text{for } m = 3; \\ b, & \text{for } m = 5; \\ c, & \text{for } m \ge 4, m \ne 5; \end{cases}$, $c = \{u_1, \dots, u_{m-2}, u_{2m-1}, \dots, u_{2m-2}, u_{2m-1}, \dots, u_{2m-2}, u_{2m-2}, \dots, u_{2m-2}, u_{2m-2}, u_{2m-2}, \dots, u_{2m-2}, u_$

For n = 5 is same as above. The representations of $r(u|\Pi)$ and $r(v|\Pi)$, with $u, v \in V(J_{m,n})$ are

$$r(u_1|\Pi) = (0,2,2), \quad r(u_2|\Pi) = (0,1,3), \qquad r(u_3|\Pi) = (0,1,1),$$

 $r(u_n|\Pi) = (0,3,1), \quad r(v_1|\Pi) = (1,0,4), \qquad r(v_2|\Pi) = (2,0,5),$
..., $r(v_{n(m-1)-1}|\Pi) = (0,3,5), \quad r(v_{n(m-1)}|\Pi) = (0,2,4).$

So the representation of $r(u|\Pi)$ and $r(v|\Pi)$ are distinct and we conclude that Π is a resolving partition of $J_{m,n}$ with 3 elements. Furthermore, we prove that there is no resolving partition with 2 elements. Suppose that $J_{m,n}$ has a resolving partition with 2 elements, $\Pi = \{S_1, S_2\}$. Based on Lemma 4.1, it is a contradiction. Therefore, $J_{m,n}$ has no a resolving

4

2016

partition with 2 elements. Thus, the partition dimension of $J_{m,n}$ is $pd(J_{m,n}) = 3$ for n = 3, 4, 5.

(2) Case $n \geq 6$.

Let $\Pi = \{S_1, S_i\}$ be a resolving partition of $J_{m,n}$ where $S_1 = \{u_i, v_j\}$, for $1 \le i \le n+1$, $1 \le j \le n(m-1)$ and $S_i = \{v_k\}$, for $1 < i \le \lfloor \frac{n}{2} \rfloor + 1$, $1 \le k \le n(m-1)$, $k \ne j$. The representation for each vertex on $J_{m,n}$ with respect to Π as follows

$$r(u_{1}|\Pi) = (0, 2, 2, \dots, 2), \qquad r(u_{2}|\Pi) = (0, 1, 3, \dots, 3),$$

$$r(u_{n+1}|\Pi) = (0, 1, 1, \dots, 3), \qquad \dots,$$

$$r(v_{1}|\Pi) = (1, 0, 4, \dots, 4), \qquad r(v_{2}|\Pi) = (2, 0, \dots, 5),$$

$$\dots, \qquad r(v_{m-1}|\Pi) = (1, 2, 0, \dots, 4), \qquad r(v_{m-1}|\Pi) = (2, 3, 0, \dots, 5),$$

$$\dots, \qquad r(v_{2m-1}|\Pi) = (2, 3, 0, \dots, 5),$$

$$r(v_{2m-1}|\Pi) = (2, 5, 3, 0, \dots),$$

$$r(v_{n(m-1)-1}|\Pi) = (0, 2, 5, \dots, 5), \qquad r(v_{n(m-1)}|\Pi) = (0, 1, 4, \dots, 4).$$
So that the following interesting the properties of the second secon

Since for each vertex of $J_{m,n}$ has a distinct representation with respect to Π , so Π is a resolving partition of $J_{m,n}$ with $\lfloor \frac{n}{2} \rfloor + 1$ elements.

Next, we show that the cardinality of Π is $\lfloor \frac{n}{2} \rfloor + 1$. The cardinality of Π is the number of k-partition in S_1 and S_i for $1 < i \le \lfloor \frac{n}{2} \rfloor$. The number of k-partition in S_1 is 1. The number of k-partition in S_i for $1 < i \le \lfloor \frac{n}{2} \rfloor$ is $\lfloor \frac{n}{2} \rfloor$. We obtain $|\Pi| = 1 + \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n}{2} \rfloor + 1$. Therefore, $\Pi = \{S_1, S_2, \ldots, S_{\lfloor \frac{n}{2} \rfloor + 1}\}$ is a resolving partition of $J_{m,n}$.

We show that $J_{m,n}$ has no $pd(J_{m,n}) < \lfloor \frac{n}{2} \rfloor + 1$. We may assume that Π is a resolving partition of $J_{m,n}$ where $pd(J_{m,n}) < \lfloor \frac{n}{2} \rfloor + 1$. So, for each vertex $v \in V(J_{m,n})$ has a distinct representation $r(v_i|\Pi)$ and $r(v_j|\Pi)$. If we select $\Pi = \{S_1, S_2, S_3, \ldots, S_{\lfloor \frac{n}{2} \rfloor}\}$ as a resolving partition then there is a partition class containing any 2 vertices of v_j . By using Lemma 4.1, the distance of vertex u_1 to the others have the same distance, and $r(v_i|\Pi) = r(v_j|\Pi)$. It is a contradiction. Hence, the partition dimension of $J_{m,n}$ is $pd(J_{m,n}) = \lfloor \frac{n}{2} \rfloor + 1$ for $n \geq 6$.

5. The Partition Dimension of a $C_n *_2 K_m$ Graph

 $C_n *_2 K_m$ graph with $n \geq 3$ and $m \geq 2$ is a graph obtained from edge amalgamation, which combine an edge of C_n and C_n and C_n are dege of K_m to be one incident edge with vertex x and y. Vertex x and y also as owned by C_n and K_m . Let $V(C_n *_2 K_m) = A \cup B \cup \{x\} \cup \{y\}$ with $A \in V(C_n) \setminus \{u_1, u_2\}$ and $B \in V(K_m) \setminus \{v_1, v_2\}$.

A vertex set $A = \{u_3, u_4, \dots, u_n\}$ and $B = \{v_3, v_4, \dots, v_m\}$, vertex $x = u_1 * v_1$ and $y = u_2 * v_2$, so $V(C_n *_2 K_m) = \{x, y, u_3, u_4, \dots, u_n, v_3, v_4, \dots, v_m\}$.

Lemma 5.1. Let G be a subgraph of $C_n *_2 K_m$ graph for $n \geq 3$, $m \geq 2$ and Π is a resolving partition of G. Then the distance of vertex x and y to vertex v_i are $d(x,v_i)=d(y,v_i)=1$ for $3\leq i\leq m$. Furthermore, x and y belong to distinct elements of Π .

Proof. Let $\Pi = \{S_1, S_2, \dots, S_m\}$ be a resolving partition of G and $x, y, v_i \in G$. Since vertex $x, y, v_i \in V(K_m)$ with $3 \le i \le m$, so the distance of vertex x and y to vertex v_i are $d(x, v_i) = d(y, v_i) = 1$ for $3 \le i \le m$. Based on Lemma 2.2 then vertex x and y belong to distinct elements of Π .

Theorem 5.1. Let $C_n *_2 K_m$ be a graph of resulting an edge amalgamation of C_n and K_m for $n \geq 3$ and $m \geq 2$ then

$$pd(C_n *_2 K_m) = \begin{cases} 3, & \text{for } m = 2, 3, 4; \\ m - 1, & \text{for } m \ge 5. \end{cases}$$

Proof. Let $C_n *_2 K_m$ be a graph of resulting an edge amalgamation for $n \geq 3$ and $m \geq 2$. A vertex set $V(C_n *_2 K_m)$ where (x, y) are joining edge among edge (u_1, u_2) and (v_1, v_2) . The proof can be divided into two cases based on the values of m.

(1) Case m = 2, 3, 4.

According to Lemma 2.1, the partition dimensions of $C_n *_2 K_m$ are $pd(C_n *_2 K_m) \neq 2$ and $pd(C_n *_2 K_m) \geq 3$.

- (a) We prove that $pd(C_n *_2 K_m) \neq 2$. Based on Lemma 2.1.1, pd(G) = 2 if and only if $G = P_n$. Since $C_n *_2 K_m$ cannot be formed be a path, then $pd(C_n *_2 K_m) \neq 2$.
- (b) We show that the partition dimension of $C_n *_2 K_m$ is $pd(C_n *_2 K_m) = 3$. For each $v \in V(C_n *_2 K_m)$, let $\Pi = \{S_1, S_2, S_3\}$ be the resolving partition where $S_1 = \{x, v_3\}$, $S_2 = \{y, v_4\}$, and $S_3 = \{u_3, \ldots, u_n\}$. We obtain the representation between all vertices of $V(C_n *_2 K_m)$ with respect to Π as follows

$$r(x|\Pi) = (0,1,1), \quad r(y|\Pi) = (1,0,1), \quad r(u_j|\Pi) = (d(u_j,x), d(u_j,y), 0),$$

 $r(v_3|\Pi) = (0,1,2), \quad r(v_4|\Pi) = (1,0,2),$

for $3 \leq j \leq n$ with $d(u_j, x), d(u_j, y) \leq \lfloor \frac{n}{2} \rfloor$. Clearly that $r(x|\Pi) \neq r(y|\Pi) \neq r(u_3|\Pi) \neq \ldots \neq r(u_n|\Pi) \neq r(v_3|\Pi) \neq \ldots \neq r(v_m|\Pi)$, and then the partition dimension of $C_n *_2 K_m$ is $pd(C_n *_2 K_m) = 3$.

(2) Case $m \geq 5$.

Let $\Pi = \{S_1, S_2, \dots, S_{m-1}\}$ be a resolving partition of $C_n *_2 K_m$ where $S_1 = \{x, v_3\}, S_2 = \{y, v_4\}, S_3 = \{u_3, \dots, u_n\}, \text{ and } S_i = \{v_{i+1}\}, \text{ with } 3 < i \le m-1.$

The representations of each vertex of $C_n *_2 K_m$ with respect to Π are $r(x|\Pi) = (0, 1, 1, ..., 1),$ $r(y|\Pi) = (1, 0, 1, ..., 1),$ $r(u_3|\Pi) = (2, 1, 0, ..., d(u_3, v_i)),$..., $r(u_n|\Pi) = (1, 2, 0, ..., d(u_n, v_i)),$ $r(v_3|\Pi) = (0, 1, 2, ..., 1),$ with $d(u_3|\Pi), ..., d(u_n|\Pi) \leq |\frac{n}{2}|$. Therefore, for each vertex $v \in V(C_n; v_n)$

with $d(u_3|\Pi), \ldots, d(u_n|\Pi) \leq \lfloor \frac{n}{2} \rfloor$. Therefore, for each vertex $v \in V(C_n *_2 K_m)$ has a distinct representation with respect to Π . So, the $C_n *_2 K_m$ graph has a resolving partition with m-1 elements. Next, we show that the cardinality of Π is m-1. The cardinality of Π is the number of k-partition in S_1, S_2, S_3 and S_i for $3 < i \leq m-1$. The number of k-partition in S_1, S_2 and S_3 are 1. The number of k-partition in S_1, S_2 and S_3 are 1. Therefore, $\Pi = \{S_1, S_2, \ldots, S_{m-1}\}$ is a resolving partition of $C_n *_2 K_m$.

We show that $C_n *_2 K_m$ has no resolving partition with m-2 elements. Assume Π is a resolving partition of $C_n *_2 K_m$ with $pd(C_n *_2 K_m) < m-1$ then for each vertex $v \in V(C_n *_2 K_m)$ has a distinct representation. If we choose $\Pi = \{S_1, S_2, \ldots, S_{m-2}\}$ as a resolving partition then one of the partition class contains 2 vertices v. By using Lemma 5.1, the distance of vertex x and y to vertex v_i , must be the same distance, and then vertex x and y belong to distinct of partition class. As a result, we have the same representation $r(x|\Pi) = r(y|\Pi)$, a contradiction. So, the partition dimension of $C_n *_2 K_m$ is $pd(C_n *_2 K_m) = m-1$ for $m \geq 5$.

6. Conclusion

According to the discussion above it can be concluded that the partition dimension of a lollipop graph $L_{m,n}$, a generalized Jahangir graph $J_{m,n}$, and a $C_n *_2 K_m$ graph are as stated in Theorem 3.1, Theorem 4.1, and Theorem 5.1, respectively.

References

- [1] Asmiati, Partition Dimension of Amalgamation of Stars, Bulletin of Mathematics Vol 04 no. 2 (2012), 161-167.
- [2] Chartrand, G., E. Salehi, and P. Zhang, On the Partition Dimension of a Graph, Congressus Numerantium Vol. 131 (1998), 55-66.
- [3] Chartrand, G., E. Salehi, and P. Zhang, *The Partition Dimension of a Graph*, Aequation Math. Vol. 55 (2000), 45-54.
- [4] Danisa, O. L., Dimensi Partisi pada Graf Flower, Graf 3-Fold Wheel, dan Graf $(K_m \times P_n) \odot K_1$, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.

- [5] Hidayat, D. W., Dimensi Partisi pada Beberapa Kelas Graf, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.
- [6] Javaid, I., and S. Shokat, On the Partition Dimension of Some Wheel Related Graph, Prime Research in Mathematics Vol. 4 (2008), 154-164.
- [7] Mojdeh, D. A., and A. N. Ghameshlou, *Domination in Jahangir Graph* $J_{2,m}$, Int. J. Contemp. Math. Sciences Vol. 2(24) (2007), 193199.
- [8] Puspitaningrum, R. T., Dimensi Partisi pada Graf Closed Helm, Graf $W_n \times P_m$, dan Graf $C_m \odot K_{1,n}$, Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta, 2015.
- [9] Tomescu, I., I. Javaid, and Slamin, On the Partition Dimension and Connected Partition Dimension of Wheels, Ars Combinatoria Vol./34 (2007), 311-317.
- [10] Weisstein, E. W., CRC Concise Encyclopedia of Mathematics CD-ROM, 2nd ed., CRC Press, Boca Raton, 2003.

8 2016