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Abstract. A simple graph G = (V,E) admits an H-labeling if every edge e ∈ E(G) belongs to
a subgraph of G isomorphic to H. Furthermore, G contains H-labeling if there exists a bijection
function f : V (G) ∪ E(G) → {1, 2, · · · , |V (G)| + |E(G)|}, such that for each subgraph H ′ of G
isomorphic to H, f(H ′) =

∑
v∈V f(v) ×

∑
e∈E f(e) = m(f) where m(f) is a magic sum. Then

G is an H-supermagic if f(V ) = {1, 2, · · · , |V (G)|}. This research aims to find H-super magic
labeling on corona product, which: a fan graph with a path (Fn ⊙ Pm) where n ≥ 4,m ≥ 3,
a ladder graph with a path (Ln ⊙ Pm), where n,m ≥ 3, and a windmill graph with a path
(W3,m ⊙ Pm) where m ≥ 3. The result show that Fn ⊙ Pm for m ≥ 3 and n ≥ 4 is C3 ⊙ Pm-
supermagic, a Ln ⊙ Pm for m,n ≥ 3 is C4 ⊙ Pm-supermagic, and W3,m ⊙ Pm for m ≥ 3 is
C3 ⊙ Pm-supermagic.
Keywords : H-supermagic labeling, fan graph, ladder graph, windmill graph, path

1. Introduction

Gallian[1] defined a graph labeling as an assignment of integers to the vertices or
edges, or both, subject to certain conditions. Magic labeling was first introduced by
Sedláček [3] in 1963.

The concept of H-magic graphs was introduced by Gutiérrez and Lladó [4] in 2005.
Suppose G = (V,E) admits an H-covering. We say that a bijective function f : V (G) ∪
E(G) → {1, 2, . . . , |V (G)|+ |E(G)|} is an H-magic labeling of G if there exists a positive
integerm(f), called magic sum, such that for any subgraph H ′ = (V ′, E′) of G isomorphics
to H, the sum

∑
v∈V ′ f(v) +

∑
e∈E′ f(e) is equal to the magic sum, m(f). If f(V ) =

{1, 2, . . . , |V (G)|}, then we say that f is an H-supermagic labeling and s(f) is a constant
supermagic sum.

Lladó and Moragas [5] proved that C3-supermagic labeling on a wheel graph Wn for
n ≥ 5 odd and a C4-supermagic labeling of a prism graph and a book graph. Roswitha
et al. [7] proved H-supermagic labeling for some classes of graphs such as a Jahangir
graph, a wheel graph for even n, and a complete bipartite graph Km,n for m = 2. In this
paper we found that a corona product of fan graph with a path (Fn ⊙ Pm) is a C3 ⊙ Pm-
supermagic for n ≥ 4,m ≥ 3, a corona product of a ladder graph with a path (Ln⊙Pm) is
a C4 ⊙ Pm-supermagic for m,n ≥ 3, and a corona product of windmill graph with a path
(W3,m ⊙ Pm) is a C3 ⊙ Pm-supermagic for m ≥ 3.

2. Main Results

2.1. k-balanced multiset. In [6] had introduced a technique of partitioning a multiset,
called k-balanced multiset.

Let k ∈ N and Y be a multiset that contains positive integers. Y is said to be
k-balanced if there exist k subsets of Y , say Y1, Y2, . . . , Yk, such that for every i ∈ [1, k],
|Yi| = |Yk|,ΣYi = ΣY

k ∈ N , dan ⊎k
i=1Yi = Y . If this case for every i ∈ [1, k] then Yi is

called a balanced subset of Y .

Lemma 2.1. (Roswitha et al.[7]) Let x and y be non negative integers. Let X = [x +

1, x+k] with |X| = k and Y = [y+1, y+k] where |Y | = k. Then the multiset K = X
⊎

Y

is k-balanced for j ∈ [1, k].
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Lemma 2.2. (Maryati [6]) Let x, y and z be positive integers. Then multiset Y = [x +

1, x+ k] ⊎ [y + 1, y + k] ⊎ [z + 1, z + k] is k-balanced for k ≥ 3 odd.

Lemma 2.3. (Maryati [6]) Let x, y and k be integers, such that 1 ≤ x ≤ y and k > 1. If

X = [x, y] and |X| is a multiple 2k, then X is k-balanced.

2.2. (k, δ)-anti balanced multiset. Inayah [2] also introduced (k, δ)-anti balanced as
follows. Let k ∈ N and X be a multiset containing positive integers. Then X is said to be
(k, δ)-anti balanced if there exists k subsets of X, say X1, X2, · · · , Xk, such that for every
i ∈ [1, k], |Xi| = |Xk|,ΣXi =

ΣX
k ∈ N,⊎k

i=1Xi = X and for i ∈ [1, k− 1],ΣXi+1−ΣXi = δ
is satisfied.

Lemma 2.4. Let x, y and z be non negative integers. Let Y = [x+ 1, x+ k]⊎ [y + 1, y +

k] ⊎ [z + 1, z + k] is (k, 1)-anti balanced for k ≥ 4 even.

Proof. For even k ≥ 4 and every i ∈ [1, k], we define the multisets Yi = {a1, bi, ci}, where
ai = x+ i

bi = y + k + 1− i

ci = z + i
Furthermore, we define

A = {ai|1 ≤ i ≤ k} = [x+ 1, x+ k]

B = {bi|1 ≤ i ≤ k} = [y + 1, y + k]

C = {ci|1 ≤ i ≤ k} = [z + 1, z + k].

For every i ∈ [1, k] we obtain |Yi| = 3 ; Yi ⊂ Y and ⊎k
i=1Yi = Y where k ≥ 4 even,

because ΣYi = x + y + z + k + 1 + i, so for every i ∈ [1, k], Σ(Yi+1) − Σ(Yi) = 1. Hence,

for every i ∈ [1, k], Y is (k, 1)-anti balanced. �

Lemma 2.5. Let x and y be non negative integers, then multiset Y = [x+1, x+k]⊎ [y+

1, y + k] is (k, 1)-anti balanced for k ≥ 3 odd.

Proof. For odd k ≥ 3 and every i ∈ [1, k], we define the multisets Yi = {a1, bi, ci}, where
ai = i+ 1,

bi =

{
2k + 1− ⌊k

2 ⌋ − ⌊ i+1
2 ⌋, for i even; i ∈ [1, k]

2k + 2− ⌈ i
2⌉, for i odd; i ∈ [1, k].

Furthermore, we define
A = {ai|1 ≤ i ≤ k} = [x+ 1, x+ k]

B = {bi|1 ≤ i ≤ k} = [y + 1, y + k],

we obtain |Yi| = 2 ; Yi ⊂ Y and ⊎k
i=1Yi = Y where k ≥ 3 odd, because

ΣYi =

{
x+ y + k + ⌈ i

2⌉, for i odd; i ∈ [1, k],

x+ y + (k+1
2 ) + ⌊ i+1

2 ⌋, for i even; i ∈ [1, k],

so Σ(Yi+2)− Σ(Yi) = 1. Hence, for every i ∈ [1, k], Y is (k, 1)-anti balanced. �

Lemma 2.6. Let x and k be non negative integers, then multiset X = [1, k + 1]\{k
2 +

1} ⊎ [x+ 1, x+ k] is (k, 1)-anti balanced for k ≥ 4 even.

Proof. For odd k ≥ 4 and every i ∈ [1, k], we define the multisets Xi = {a1, bi, ci}, where

ai =

{
i for i ∈ [1, k

2 ]

i+ 1 for i ∈ [k2 + 1, k]

bi =

{
2k + 1− 2i+ 3, for i ∈ [1, k

2 ]

3k − 2i+ 2, for i ∈ [k2 + 1, k].
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Furthermore, we define

A = {ai|1 ≤ i ≤ k} = [1, k + 1]\{k
2 + 1},

B = {bi|1 ≤ i ≤ k} = [x+ 1, x+ k],

we obtain |Yi| = 2 ; Yi ⊂ Y and ⊎k
i=1Yi = Y where k ≥ 3 odd, because

ΣXi =

{
x+ k + 2− i, for i ∈ [1, k2 ],

2x+ k + 1− i, for i ∈ [k2 + 1, k],

so Σ(Xi)−Σ(Xi+1) = 1. Hence, for every i ∈ 1 and i ∈ k
2+1, Y is (k, 1)-anti balanced. �

Here we provide three examples of those lemmas as follows.

(1) Let Y = [55, 60] ⊎ [61, 66] ⊎ [67, 22] where x = 54, y = 60, z = 66, and k = 6.
According to Lemma 2.4, we have 6-subsets of Y as follows. Y1 = {55, 66, 67}, Y2 =
{56, 65, 68}, Y3 = {57, 64, 69}, Y4 = {58, 63, 70}, Y5 =
{59, 62, 71}, and Y6 = {60, 61, 72}. Hence, Σ(Yi+1) − Σ(Yi) = 1 for i ∈ [1, 6] and
ΣYi = 187 + i, then Y is (6, 1)-anti balanced.

(2) Let Y = [2, 4] ⊎ [5, 7] where x = 1, y = 4, and k = 3. According to Lemma 2.5, we
have 3-subsets of Y as follows. Y1 = {2, 7}, Y2 = {3, 5}, and Y3 = {4, 6}. Hence,
Σ(Yi+2)− Σ(Yi) = 1 for i ∈ [1, 3] and

ΣYi =

{
8 + ⌈ i

2⌉, if i odd, for i ∈ [1, 3]
7 + ⌊ i+1

2 ⌋, if i even, for i ∈ [1, 3],
and we have that Y is (3, 1)-anti balanced.

(3) Let X = [1, 5]\{3} ⊎ [6, 9] where x = 5 and k = 4. According Lemma 2.6, we have
4-subsets of X as follows. X1 = {1, 9}, X2 = {2, 7}, X3 = {4, 8} and X4 = {5, 6}.
Hence, Σ(Xi)− Σ(Xi+1) = 1 for i ∈ 1 and i ∈ 3. Furthermore,

ΣXi =

{
11− i, for i ∈ [1, 2]
15− i, for i ∈ [3, 4],

then X is (4, 1)-anti balanced.

2.3. C3 ⊙ Pm-Supermagic Labeling On Corona Product of A Fan and A Path.

Theorem 2.1. A graph Fn ⊙ Pm is C3 ⊙ Pm-supermagic for m ≥ 3, n ≥ 4.

Proof. Let G be a graph Fn ⊙ Pm. Then V (G) = {vi; 0 ≤ i ≤ n} ⊎ {bj ; 1 ≤ j ≤ m(n+ 1)}
and E(G) = {v0v1, v0v2, · · · , vn−1vn} ⊎ {cj ; 1 ≤ j ≤ m(n+ 1)}⊎
{aij ; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ m− 1} where |V (G)| = (n+1)+m(n+1) and |E(G)| = 2m(n+

1)n − 2. We have bijective function f : V (G) ∪ E(G) → {1, 2, . . . , 3m(n+ 1) + 2n− 1}.
Given a set of labels for all vertices and edges of G denoted by Z, where Z = [1, 3m(n+

1) + 2n− 1]. Partition Z into 5 sets : A = [1, n+ 1], B = [n+ 2, (n+ 1) +m(n+ 1)], C =

[(n + 1) + m(n + 1) + 1, (2m + 1)(n + 1)], D = [(2m + 1)(n + 1) + 1, 3nm + 3m], E =

[3mn+ 3m+ 1, 3mn+ 3n+ 2n− 1].

All vertices and edges of subgraph Hi labeled with some certainty. The set A is used

to label vertices vi where 0 ≤ i ≤ n, E is used to label edges {v0v1, · · · , v0vn, · · · , vn−1vn,

vnv1}.
Label each vertex of Fn graph other than central vertex by

f(vi) =

{
1
2 (i+ 1), for i odd; i ∈ [1, n],

⌊ 1
2 (n+ i+ 1)⌋, for i even; i ∈ [1, n],

f(v0vi) = 3mn+ 3m+ n+ 1− i, for i ∈ [1, n],

f(vivi+1) = 3mn+ 3m+ n+ i, for i ∈ [1, n− 1],
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if we set, f(v0) = n + 1, then the constant supermagic sum of C3 is f(C3) =

9mn+ 9m+ 4n+ 2 + ⌊12(n+ 3)⌋.
Furthermore, the set B is used to label bj where 1 ≤ j ≤ m(n+ 1) and C is used to

label cj where 1 ≤ j ≤ m(n+ 1). Let K = B ⊎C according to Lemma 2.1 with x = n+ 2

and k = m(n+ 1), we have m(n+ 1)-balanced where ΣKi = 2(nm+ n+m) + 3.

Next, we used D to label edges aij where 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ m − 1. The

proof we divided the proof by 2 cases, based on values of m.

Case 1. m is odd (m ≥ 3).

According to Lemma 2.3 with x = (2m + 1)(n + 1) + 1, y = 3mn + 3m and |D| =

m(n+ 1)− n− 1, we have (n+ 1)-balanced where ΣDi =
1
2(m− 1)(5m(n+ 1) + n+ 2).

Case 2. m is even (m ≥ 4).

Partition D into 2 subsets : D1 = [(2m+1)(n+1)+1, 2m(n+1)+5n], D2 = [2m(n+1)+

5n+1, 3mn+3m]. For m = 4 defined D = D1. Let D = D1⊎D2 for m ≥ 6. According to

Lemma 2.2 with x = 2mn+2m+ n+1, y = 2mn+2m+2n+2, z = 2mn+2m+3n+3,

we obtain (n+1)-balanced where ΣD1i = 6(mn+m+n+1)+ (n+1)+ ⌊n+1
2 ⌋+1. Then

based on Lemma 2.3 for x = 2m(n+ 1) + 5n, y = 3mn+ 3m and |D2| = (n+ 1)(m− 4),

we have (n + 1)-balanced where ΣD2i = 1
2(m − 4)(5m2n + 5m + 5n). Then ΣDi =

1
2(5m

2n+ 5m2 − 3mn)− 4m− 3n+ 9 + ⌊n+1
2 ⌋.

The constant supermagic sum of subgraph C3 ⊙ Pm as follows.

f(C3 ⊙ Pm) =


1
2 (27m

2n+ 27m2 + 9m− 3n)− 3, for m is odd; m ≥ 3,

6m2n+ 6m2 + 24mn+ 27m+ 21n+ 24 + 3⌊n+1
2 ⌋, for m = 4,

1
2 (15m

2n+ 15m2 − 9mn)− 12m− 9n+ 27 + 3⌊n+1
2 ⌋, for m is even; m ≥ 6.

�

Figure 1, illustrates an example of C3 ⊙P3-supermagic labeling on a F4 ⊙P3 graph.
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Figure 1. C3 ⊙ P3-supermagic labeling on a F4 ⊙ P3 graph.
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2.4. C4⊙Pm-Supermagic Labeling On A Ladder Corona with A Path Ln⊙Pm.

Theorem 2.2. A graph Ln ⊙ Pm is C4 ⊙ Pm-supermagic for m,n ≥ 3.

Proof. Let G be a graph Ln ⊙ Pm. Let V (G) = {ui; 1 ≤ i ≤ n} ⊎ {vi; 1 ≤ i ≤ n} ⊎
{bj ; 1 ≤ j ≤ 2nm} and E(G) = {u1u2, · · · , un−1un, v1v2, · · · , vn−1vn, u1v1, · · · , unvn} ⊎
{cj ; 1 ≤ j ≤ 2nm}⊎{aij ; 1 ≤ i ≤ 2n; 1 ≤ j ≤ m− 1} where |V (G)| = 2n(m+1) and |E(G)| =
4nm+n− 2. We have a bijective function f : V (G)∪E(G) → {1, 2, . . . , 3n(2m+ 1)− 2}.
Given a set of label for all vertices and edges of G denoted by Z, where Z = [1, 3n(2m+

1) − 2]. Partition Z into 5 sets : A = [1, 2n], B = [2n + 1, 2nm + 2n], C = [2nm + 2n +

1, 4nm+ 2n], D = [4nm+ 2n+ 1, 6nm], E = [6nm+ 1, 6nm+ 3n− 2].

All vertices and edges for each subgraph Hi labeled with some certainty. The set A is

used to label vertices vi where 1 ≤ i ≤ n, E is used to label edges {u1u2, · · · , un−1un, v1v2,

· · · , vn−1vn, u1v1, · · · , unvn}.
Label each vertex and edges of Ln graph by.

f(x) =



i, if x = ui; for i ∈ [1, n],

2n+1-i, if x = vi; for i ∈ [1, n],

6nm+3i, if x = uiui+1; for i ∈ [1, n− 1],

6nm+3i-1, if x = vivi+1; for i ∈ [1, n− 1],

7nm-3m+10-3i, if x = uivi; for i ∈ [1, n].

Hence, the constant supermagic sum of C4 is f(C4) = 26nm+ 4n− 6m+ 18.

Furthermore, the set B is used to label bj where 1 ≤ j ≤ 2nm and C is used to

label cj where 1 ≤ j ≤ 2nm. Let K = B ⊎ C, according to Lemma 2.1 with x = 2n and

k = 2nm, we have 2nm-balanced where ΣKi = 4nm+ 4n+ 1.

Next, we used D to label edges aij where 0 ≤ i ≤ 2n and 1 ≤ j ≤ m− 1. The proof

is divided by 2 cases, based on values of m.

Case 1. m is odd (m ≥ 3).

According to Lemma 2.3 with x = 4nm+ 2n+ 1, y = 6nm and |D| = 2n(m− 1), we have

2n-balanced where ΣDi =
2nm−2n

4n (10nm+ 2n+ 1).

Case 2. m is even (m ≥ 4).

Partition D into 2 subsets : D1 = [4nm + 2n + 1, 4nm + 8], D2 = [4nm + 8n + 1, 6nm].

For m = 4 defined D = D1. Let D = D1 ⊎D2 for m ≥ 6, according to Lemma 2.4 with

x = 4nm+2n, y = 4nm+3n+3, z = 4nm+3n+3, we obtain (k, 1)-anti balanced where

ΣD1i = 12nm+ 12n+ 7+ i. Then based on Lemma 2.1 for x = 4nm+ 8n, y = 6nm− 2n

and |D2| = 2n(m − 4), we have 2n-balanced where ΣD2i = 2(4nm + 10n) − 1. Then

ΣDi = 20nm+ 32n+ 8 + i.

The constant supermagic sum of subgraph C4 ⊙ Pm as follows.

f(C4 ⊙ Pm) =


16m2n+ 56nm+ 8n+ 4m+ 4, for m is odd; m ≥ 3

16m2n+ 90nm+ 52n− 2m+ 60, for m = 4

16m2n+ 122nm+ 132n− 2m+ 64, for m is even; m ≥ 6.

�
Figure 2, illustrates an example of C4 ⊙P3-supermagic labeling on a L3 ⊙P3 graph.
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Figure 2. C4 ⊙ P3-supermagic labeling on a L3 ⊙ P3 graph.

2.5. C3 ⊙Pm-Supermagic Labeling On A Windmill Corona with A Path W3,m ⊙
Pm.

Theorem 2.3. A graph W3,m ⊙ Pm is C3 ⊙ Pm-supermagic for m ≥ 3.

Proof. LetG be a graphW3,m⊙Pm. Let V (G) = {vi; 0 ≤ i ≤ 2m}⊎{bj ; 1 ≤ j ≤ (2m+ 1)m}
and E(G) = {v0v1, · · · , v0vn, v0u1, · · · , v0un, v1v1, · · · , vnun} ⊎ {cj ; 1 ≤ j ≤ (2m+ 1)m} ⊎
{aij ; 1 ≤ i ≤ 2m+ 1; 1 ≤ j ≤ m− 1} where |V (G)| = 2m2+3m+1 and |E(G)| = 6m2. We

have a bijective function f : V (G)∪E(G) → {1, 2, . . . , 8m2 + 3m+ 1}. Given a set of label

for all vertices and edges of G denoted by Z, where Z = [1, 8m2+3m+1]. Partition Z into

5 sets : A = [1, 2m+2], B = [2m+2, 2m2+3m+1], C = [2m2+3m+2, 4m2+4m+1], D =

[4m2 + 4m+ 2, 6m2 + 3m], E = [6m2 + 3m+ 1, 6m2 + 6m].

All vertices and edges for each subgraph Hi labeled with some certainty. The set A is

used to label vertices vi where 1 ≤ i ≤ m, E is used to label edges {v0v1, v0v2, · · · , v0vn, v0u1,
v0u2, · · · , v0un, v1v1, v2u2, · · · , vnun}.

Case 1. m is even (m ≥ 4).

(1) Lemma 2.6 is applied to label each vertex of W3,m graph other than central vertex

by.

f(vi) =

{
i, for i ∈ [1, m2 ],

i+ 1, for i ∈ [m2 + 1,m],

and

f(ui) =

{
2m− 2i+ 3, for i ∈ [1, m2 ],

3m− 2i+ 2, for i ∈ [m2 + 1,m].

(2) Label each edge of W3,m graph as follows.

f(v0vi) =

{
6m2 + 7

2m+ i, for i ∈ [1, m2 ],

6m2 + 5
2m+ i, for i ∈ [m2 + 1,m],
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f(v0ui) =

{
6m2 + 9

2m+ 1− i, for i ∈ [1, m2 ],

6m2 + 11
2 m+ 1− i, for i ∈ [m2 + 1,m],

and

f(viui) =

{
6m2 + 11

2 m+ i, for i ∈ [1, m2 ],

6m2 + 9
2m+ i, for i ∈ [m2 + 1,m].

For f(v0) = m
2 + 1. Hence, the constant supermagic sum of C3 is f(C3) = 18m2 +

16m+ 5.

Case 2. m is odd (m ≥ 3).

(1) Lemma 2.5 is applied to label every vertex of W3,m graph as follows.

f(ui) =

{
2m+ 1− ⌊m

2 ⌋ − ⌊ i+1
2 ⌋, for i even, i ∈ [1,m],

2m+ 2− ⌈ i
2⌉, for i even, i ∈ [1,m],

and f(vi) = i+ 1; for i ∈ [1,m].

(2) Label each edge of W3,m graph as follows.

f(v0vi) =

{
6m2 + 3m+ ⌈m

2 ⌉ − ⌊ i
2⌋, if i odd, for i ∈ [1,m]

6m2 + 4m+ 2− ⌈ i+1
2 ⌉, if i even, for i ∈ [1,m],

f(v0ui) =

{
6m2 + 5m− ⌈m

2 ⌉+ ⌈ i
2⌉, if i odd, for i ∈ [1,m]

6m2 + 4m+ 2− ⌊ i+1
2 ⌋, if i even, for i ∈ [1,m],

and

f(viui) =

{
6m2 + 5m+ ⌈m

2 ⌉ − ⌊ i
2⌋, if i odd, for i ∈ [1,m]

6m2 + 6m+ 2− ⌈ i+1
2 ⌉, if i even, for i ∈ [1,m],

Hence, the constant supermagic sum of C3 is f(C3) = 18m2 + 15m+ ⌈m2 ⌉+ 5.

Furthermore, the set B is used to label aj where 1 ≤ j ≤ ((2m+1)m) and C is used

to label bj where 1 ≤ j ≤ ((2m + 1)m). Let K = B ⊎ C, according to Lemma 2.1 with

x = 2m+2 and k = (2m+1)m, we have (2m+1)m-balanced where ΣKi = 4m2+6m+3.

Next, we used D to label edges aij , where 1 ≤ i ≤ 2m+ 1 and 1 ≤ j ≤ m− 1. The

proof is divided by 2 cases, based on values of m.

Case 1. m is odd (m ≥ 3).

According to Lemma 2.3 with x = 4m2+4m+2, y = 6m2+3m and |D| = (2m+1)(m−1),

we have (2m+ 1)-balanced where ΣDi =
1
2(m− 1)(10m2 + 7m+ 2).

Case 2. m is even (m ≥ 4).

Partition D into 2 sets : D1 = [4m2+4m+2, 4m2+10m+4], D2 = [4m2+10m+5, 6m2+

3m]. For m = 4 defined D = D1. Let D = D1 ⊎ D2 for m ≥ 6. According to Lemma

2.2 with x = 4m2 + 4m + 1, y = 4m2 + 6m + 2, and z = 4m2 + 8m + 3, we obtain D1 is

(2m+ 1)-balanced where ΣD1i = 12m2 + 20m+ 8 + ⌈2m+1
2 ⌉. Then, based on Lemma 2.3

for x = 4m2 + 10m + 5, y = 6m2 + 3m and |D2| = 4m + 2, we have (2m + 1)-balanced

where ΣD2i =
1
2(m− 4)(10m2 + 13m+ 5). Then ΣDi = 5m3 − 3

2m
2 − 7

2m− 2 + ⌈2m+1
2 ⌉.

Furthermore, the constant supermagic sum of a subgraph C3 ⊙ Pm is.

f(C3 ⊙ Pm) =


27m3 + 63

2 m2 + 33
2 m+ ⌈m

2 ⌉+ 2, for m odd , m ≥ 3

12m3 + 72m2 + 85m+ 29 + 3⌈ 2m+1
2 ⌉, for m = 4

27m3 + 63
2 m2 + 29

2 m− 1 + 3⌈ 2m+1
2 ⌉, for m even , m ≥ 6.
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Figure 3 illustrates an example of C3 ⊙Pm-supermagic labeling on a W3,3 ⊙P3 graph.
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Figure 3. C3 ⊙ P3-supermagic labeling on a W3,3 ⊙ P3 graph.
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