OPTIMIZATION OF SURFACE ORIENTATION ANGLES TO RECEIVE MAXIMUM SOLAR RADIATION AT SABHA CITY IN LIBYA

Thesis

By

HASAN M.S.ATIA
S951302505

MECHANICAL ENGINEERING DEPARTMENT
POSTGRADUATE PROGRAM
SEBELAS MARET UNIVERSITY
SURAKARTA
2015

commit to user
APPROVAL

OPTIMIZATION OF SURFACE ORIENTATION ANGLES TO RECEIVE MAXIMUM SOLAR RADIATION AT SABHA CITY IN LIBYA

By
HASAN M.S. ATIA
S951302505

Supervisor Board
Supervisor I Prof. Muhammad Nizam S.T., M.T., Ph.D.
NIP 197007201999031001

Signature
Date 26/8/2015

Supervisor II Dr. Miftahul Anwar, S.Si., M.Eng.
NIP 1983032420130201

Signature
Date 27/8/2015

commit to user
SUPERVISOR ENDORSEMENT

OPTIMIZATION OF SURFACE ORIENTATION ANGLES TO RECEIVE MAXIMUM SOLAR RADIATION AT SABHA CITY IN LIBYA

THESIS

HASAN M.S.ATIA
S951302505

Approved By Team Examiner

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Dr. Eng. Agung Tri Wijayanta, ST, M.Eng.</td>
<td></td>
<td>20/8/2015</td>
</tr>
<tr>
<td></td>
<td>NIP 197108311997021001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Danardono, ST. MT, P.hD.</td>
<td></td>
<td>26/8/2015</td>
</tr>
<tr>
<td></td>
<td>NIP 196905141999031001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member</td>
<td>Prof. Muhammad Nizam S.T., M.T., Ph.D.</td>
<td></td>
<td>26/8/2015</td>
</tr>
<tr>
<td></td>
<td>NIP 197007201999031001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Miftahul Anwar, S.Si., M.Eng.</td>
<td></td>
<td>27/8/2015</td>
</tr>
<tr>
<td></td>
<td>NIP 1983032420130201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examination on
Date July 2015

Director of Postgraduate Programs of
School of Maret University
Prof. Dr. M. Furqon Hidayatullah, M.Pd.
NIP. 1960727 198702 1 001

Head of the Program
Mechanical Engineering
Dr. Trivono, ST. MT.
NIP 197406251999031002
CONTENT LIST

TITLE .. i
APPROVAL PAGE ... ii
SUPERVISOR ENDORSEMENT ... iii
CONTENT LIST ... iv
FIGURE LIST .. vii
TABLE LIST ... viii
NOMENCLATURE .. ix
ABSTRACT ... xi

CHAPTER I INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Problem Statement ... 3
 1.3 Objectives .. 3
 1.4 Limitation of Study ... 4
 1.5 Contribution .. 4

CHAPTER II BASIC THEORY ... 5
 2.1 Previous studies .. 5
 2.2 Principles of solar radiation system .. 6
 2.2.1 Solar declination angle (δ°) ... 7
 2.2.2 Solar Hour Angle (ω°) ... 9
 2.2.3 Solar Time (τs) .. 9
 2.2.4 Equation Time (E) .. 9
 2.2.5 The angle of incidence solar radiation (θ°) 10
 2.2.6 Zenith angle (θz°) ... 10
 2.2.7 Extraterrestrial normal radiation (Gon) 11
 2.2.8 Extraterrestrial horizontal radiation (Gh) 11
 2.2.9 Average extraterrestrial horizontal radiation over the time step 12
 2.2.10 Sunset hour angle (ωs) ... 12

commit to user
2.2.11 Monthly average daily for extraterrestrial horizontal radiation, global horizontal radiation and clearness index ... 12
2.2.12 Hourly clearness index K_T .. 13
2.2.13 Solar radiation on the earth's surface 13
2.2.14 Total radiation incident on tilted surface using Reindl et al. Model (1990) ... 14

2.3 Genetic Algorithm ... 17
2.3.1 Basic of Genetic Algorithm (GA) ... 17
2.3.2 The major steps algorithm of GA ... 17

CHAPTER III RESEARCH METHODOLOGY .. 21
3.1 Location selection ... 21
3.2 Data resource .. 21
3.3 Apparatus ... 21
3.4 Research Procedure .. 21
3.5 The Flow Chart of The Method .. 23

CHAPTER IV RESULTS AND DISCUSSION .. 24
4.1 Validation ... 24
4.2 Result ... 26
4.3 Solar Radiation of Horizontal Surface .. 26
4.4 Monthly average daily Extraterrestrial (Ho), Global (H), Diffuse (Hd) and Beam (Hb) solar radiation on horizontal surface ... 27
4.5 Yearly Total Incident Solar Radiation versus Orientation Angles ... 28
4.6 Monthly Total Incident Solar Radiation versus Orientation Angles ... 29
4.7 Yearly and Monthly Optimization of Orientation Angles (β_{opt}, γ_{opt}) with Genetic Algorithm (GA) ... 30
4.8 Yearly and Monthly Optimization for South-Facing Surface (Azimuth Angle, $\gamma_{opt} = 0^\circ$) 32
4.9 Comparison monthly and yearly total of solar radiation between horizontal surface, GA optimization, and south-facing optimization with the energy gain. ... 35
4.10 Comparison of monthly incident solar radiation and energy gain between horizontal surface, GA optimization, and facing south optimization 36
4.11 Proposed method evaluation .. 37
 4.11.1 Evaluation method of Homer for present study using yearly orientation angles of GA optimization ... 39
 4.11.2 Evaluation method of Homer for present study using monthly adjusted orientation angles of GA optimization 39

CHAPTER V CONCLUSION .. 41
 5.1 Conclusion ... 41
 5.2 Recommendation .. 41

REFERENCES.. 43
FIGURES LIST

Figure 1.1 Global horizontal irradiation of Libya 3
Figure 2.1 Angles of solar system panel (solar collector or PV panel) 7
Figure 2.2 Definition of latitude, hour angle, and solar declination angle... 7
Figure 2.3 Yearly variation of solar declination. 8
Figure 2.4 Solar radiation components. .. 15
Figure 2.5 Flow chart of genetic algorithm ... 18
Figure 2.6 One-point crossover and mutation operators 20
Figure 3.1 Flow Chart of The Method .. 23
Figure 4.1 Comparison result of purposed method and previous study result for Fez city, Morocco ... 25
Figure 4.2 Monthly average daily solar radiations on horizontal surface 27
Figure 4.3 Monthly average daily global horizontal radiation and clearness index .. 28
Figure 4.4 3 dimensions surface of annual incident solar radiation versus orientation angles .. 29
Figure 4.5 Contour lines of annual incident solar radiation versus orientation angles ... 29
Figure 4.6 Monthly total incident radiations with tilt angle Optimization for South-Facing Surface ... 34
Figure 4.7 Tilt Angle of Yearly Optimization of South-Facing Surface 34
Figure 4.8 Comparison of yearly and monthly total of solar radiation and energy gain between horizontal surface, GA optimization, and south-facing optimization ... 35
Figure 4.9 Monthly solar radiations and energy gain of GA optimization and South-facing optimization ... 36
Figure 4.10 Yearly optimization orientation angles of GA comparing between proposed simulations with Homer software 39
Figure 4.11 Monthly optimization orientation angles of GA at optimum monthly adjusted orientation angles ($\beta_{opt(m)}$, $\gamma_{opt(m)}$) 40
TABLES LIST

Table 4.1 Yearly optimum tilt angle of proposed method and previous study result that conducted by Ihya et al (2014) for Fez city, Morocco ... 24
Table 4.2 Monthly optimum tilt angle of proposed method and previous study result that conducted by Ihya et al in 2014 for Fez city, Morocco ... 24
Table 4.3 Annually total solar radiation on Horizontal Surface ... 27
Table 4.4 Description the objective function (f_{s_m}) for monthly simulation ... 30
Table 4.5 The best solution of yearly optimization using GA 31
Table 4.6 The second solution for monthly optimization using GA. 32
Table 4.7 Yearly and Monthly Optimum Tilt Angle for a South Facing Solar Surface ... 33
Table 4.8 Total yearly and monthly solar radiation and energy gain of horizontal surface, GA optimization, and south facing optimization .. 36
Table 4.9 Monthly solar radiation and energy gain of GA optimization and South-facing optimization ... 37
NOMENCLATURE

\(\delta \) is solar declination angle
n is the day of the year [a number 1 through 365]
\(\omega \) is Solar Hour Angle (hr)
\(t_s \) is the solar time (hr)
\(t_c \) is the civil time in hours corresponding to the midpoint of the time step [hr]
\(\lambda \) is the longitude [°]
\(Z_c \) is the time zone in hours east of GMT [hr]
E is the equation of time [hr]
n is the day of the year, starting with 1 for January 1st.
\(\Theta \) is the angle of incidence [°]
\(\beta \) is the slope of the surface [°]
\(\gamma \) is the azimuth of the surface [°]
\(\phi \) is the latitude [°]
\(\Theta_z \) is the zenith angle [°]
\(G_{on} \) is the extraterrestrial normal radiation [kW/m²]
\(G_{sc} \) is the solar constant [1.367 kW/m²]
\(G_o \) is the extraterrestrial horizontal radiation [kW/m²]
\(\bar{G}_o \) is the extraterrestrial horizontal radiation averaged over the time step [kW/m²]
\(\omega_1 \) is the hour angle at the beginning of the time step [°]
\(\omega_2 \) is the hour angle at the end of the time step [°]

\(H_{ave} \) is the monthly average daily of global horizontal solar radiation (KWh/m²/day)
\(H_{o, ave} \) is the average extraterrestrial horizontal radiation for the month [kWh/m²/day]
N is the number of days in the month
\(\bar{G} \) is the global horizontal radiation on the earth's surface averaged over the time step [kW/m²]
\(\bar{G}_b \) is the beam radiation [kW/m²]
\(\bar{g}_d \) is the diffuse radiation [kW/m²]
\(\bar{g}_r \) is hourly total radiation on a tilted surface (KW/m²).
\(G_{bt} \) is hourly beam radiation on a tilted surface (KW/m²).
\(G_{gr} \) is hourly ground-reflected solar radiation (KW/m²).
\(\rho_g \) is the ground reflectance, which is also called the albedo [%]

ABSTRACT

In this paper, the Genetic Algorithm (GA) is implemented to calculate the optimum tilt and surface azimuth angle for solar system surfaces to receive maximum solar radiation. Sabha city in Libya is selected to verify the results of GA. The optimum surface orientation angles and the flat surface input solar energies for these angles are calculated in monthly and yearly bases. Then, The comparison of different optimizations of GA and South-Facing for an inclined surface was compared with the horizontal surface in a year and the energy gained was investigated. The total extra solar energy gained in one year for the yearly optimized surface angles of GA and South-Facing compared to the horizontal surface are 10.8% and 10.3%, respectively. The total extra solar energy gained in one year for the monthly optimized surface angles of GA and South-Facing compared to the horizontal surface are 18.72% and 18.03%, respectively. The yearly optimum tilt angle of the generic algorithm was 30.4° where the azimuth was at -19°. In another result, the yearly optimum tilt angle of south-facing was 29°. It has been figured out that the yearly optimum tilt angle of both was closed to the latitude of the location. Furthermore, the results indicate that the monthly based optimization improved the energy gain higher than the yearly based optimization. The genetic algorithm optimization performed better results than the conventional south facing optimization although the difference of the results was not significant for both yearly and monthly total incident solar radiation.

Keywords: Solar energy, Solar radiation, Orientation angles, Optimization