On the Total Edge Irregularity Strength of Generalized Butterfly Graph

Hafidhyah Dwi Wahyuna and Diari Indriati
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
E-mail: dwhafidhyah@gmail.com, diari_indri@yahoo.co.id

Abstract. Let $G(V, E)$ be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels $\{1, 2, ..., k\}$. An edge irregular total k-labeling is a labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by $wt(uv)$, is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by $tes(G)$, is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BF_n, obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has $2n + 1$ vertices and $4n - 2$ edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BF_n, for $n \geq 2$. The result is $tes(BF_n) = \lceil \frac{4n}{3} \rceil$.

1. Introduction

Let $G(V, E)$ be a connected, simple, and undirected graph with vertex set V and edge set E. A labeling of a graph G is a mapping that carries a set of graph elements into a set of positive integers, called labels (Wallis [8]). If the domain of mapping is a vertex set, or an edge set, or a union of vertex and edge sets, then the labeling is called vertex labeling, edge labeling, or total labeling, respectively. In Gallian’s survey [2], he showed that there were various kinds of labelings on graphs, and one of them was an irregular total labeling.

Baća et al. [1] introduced the notion of a total k-labeling, an edge irregular total k-labeling, and a vertex irregular total k-labeling. For a graph $G(V, E)$, they defined a labeling $f : V \cup E \to \{1, 2, ..., k\}$ to be a total k-labeling. An edge irregular total k-labeling with vertex set V and edge set E is a labeling $\lambda : V(G) \cup E(G) \to \{1, 2, ..., k\}$ such that for two different edges $e = u_iv_j$ and $f = u_kv_l$ then their weight $wt(e) \neq wt(f)$. The weight of an edge uv in G, denoted by $wt(uv)$, is defined as the sum of the label of u, the label of v, and the label of uv, that is

$$wt(uv) = \lambda(u) + \lambda(uv) + \lambda(v).$$

Furthermore, Baća et al. [1] also defined the total edge irregularity strength of G, denoted by $tes(G)$, as the minimum value of the largest label k over all such edge irregular total k-labelings. They also gave a lower bound and an upper bound on $tes(G)$ with vertex set V and a non-empty edge set E,

$$\left\lfloor \frac{|E| + 2}{3} \right\rfloor \leq tes(G) \leq |E|. \tag{1}$$
Many researchers have investigated $tes(G)$ to some graph classes. By then, there are some result related to the $tes(G)$. Bača et al. [1] proved $tes(G)$ of paths, cycles, stars, wheels, and friendship graphs, that are, $tes(P_n) = tes(C_n) = \lceil \frac{n+2}{3} \rceil$, $tes(S_n) = \lceil \frac{n+1}{3} \rceil$, $tes(W_n) = \lceil \frac{2n+2}{3} \rceil$ for $n \geq 3$, and $tes(F_n) = \lceil \frac{3n+2}{3} \rceil$. Then, $tes(G)$ of tree G with edge set E and maximum degree Δ had been found by Ivančo and Jendrol’ [6], that is $tes(G) = \max\{\lceil \frac{\Delta+1}{3} \rceil, \lceil \frac{|E|+2}{3} \rceil\}$. In 2008, Nurdin et al. [7] proved $tes(G)$ of the corona product of paths with some graphs, namely paths P_n, cycles C_n, stars S_n, gears G_n, friendships F_n, and wheels W_n. Haque [3] in 2012 proved $tes(G)$ of generalized Petersen graphs $P(n,k)$ and Indriati et al. [4] found $tes(G)$ of Helm, H_n, and disjoint union of t isomorphic helms, tH_n. In 2013 Indriati et al. [5] found $tes(H^1_n) = \lceil \frac{4n+2}{3} \rceil$, $tes(H^2_n) = \lceil \frac{5n+2}{3} \rceil$, and $tes(H^m_n) = \lceil \frac{(m+3)n+2}{4} \rceil$ for $n \geq 3$ and $m \equiv 0 \pmod{3}$.

Weisstein [9] defined the butterfly graph is a planar undirected graph with 5 vertices and 6 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BF_n, for $n \geq 2$.

2. Main Result

A generalized butterfly graph, BF_n, obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has $2n+1$ vertices and $4n-2$ edges. Let the vertex set of BF_n be $V(BF_n) = \{v_i \mid i = 0, 1, 2, ..., 2n\}$ and the edge set of BF_n be $E(BF_n) = \{(v_i, v_{i+1}) \mid i = 1, 2, ..., n-1, n+1, ..., 2n-1\} \cup \{(v_0, v_i) \mid i = 1, 2, ..., 2n\}$. Figure 1 illustrates the generalized butterfly graph BF_n. Based on Figure 1, BF_n has $\{v_0\}$ as an apex, $\{v_1, v_2, v_3, ..., v_{(n-1)}, v_n\}$ as vertices on right wing, and $\{v_{(n+1)}, v_{(n+2)}, v_{(n+3)}, ..., v_{(2n-1)}, v_{2n}\}$ as vertices on left wing.

![Figure 1. The generalized butterfly graph BF_n](image)

In the next theorem, we present the total edge irregularity strength of generalized butterfly graph, BF_n, for $n \geq 2$ as follows:

Theorem 2.1 For $n \geq 2$, $tes(BF_n) = \lceil \frac{4n}{3} \rceil$.

Proof. From the lower bound of total edge irregularity strength we have that $tes(BF_n) \geq \lceil \frac{4n}{3} \rceil$, $n \geq 2$. To prove the equality, it is sufficient to show the existence of an edge irregular total k_1-labeling with $k_1 = \lceil \frac{4n}{3} \rceil$. Let $k_1 = \lceil \frac{4n}{3} \rceil$. Then from inequality (1) it follows that, $tes(BF_n) \geq \lceil \frac{|E(BF_n)|+2}{3} \rceil = \lceil \frac{(4n-2)+2}{3} \rceil = \lceil \frac{4n}{3} \rceil = k_1$, that is $tes(BF_n) \geq k_1$. To prove the reverse
inequality, we define a function \(f_1 \) as follows.

Case 1: For \(n \equiv 2(\text{mod} 3), \ n \geq 2. \)

\[
f_1(v_0) = \left\lfloor \frac{4n}{3} \right\rfloor.
\]

\[
f_1(v_i) = \begin{cases} 1, & \text{for } 1 \leq i \leq \frac{2n+5}{3}; \\ f_1(v_{i-1}) + (-1)^i(\frac{2n-1}{3} - i(\text{mod } 2)), & \text{for } \frac{2n+5}{3} \leq i \leq 2n. \end{cases}
\]

\[
f_1(v_{vi}) = \begin{cases} i, & \text{for } 1 \leq i \leq \frac{2n+2}{3}; \\ 2, & \text{for } \frac{2n+5}{3} \leq i \leq n - 1; \\ 1, & \text{for } n + 1 \leq i \leq 2n - 1. \end{cases}
\]

\[
f_1(v_{0vi}) = \begin{cases} \frac{2n-4}{3} + i, & \text{for } 1 \leq i \leq \frac{2n+5}{3}; \\ \left\lceil \frac{4n}{3} \right\rceil, & \text{for } \frac{2n+8}{3} \leq i \leq 2n. \end{cases}
\]

Case 2: For \(n \equiv 0(\text{mod} 3), \ n \geq 3 \) and \(n \) is odd.

\[
f_1(v_0) = \left\lfloor \frac{4n}{3} \right\rfloor.
\]

\[
f_1(v_i) = \begin{cases} \frac{2n}{3}, & \text{for } 1 \leq i \leq \frac{2n}{3}; \\ f_1(v_{i-1}) + (-1)^{i-1}(\frac{2n-3}{3} - i(\text{mod } 2)), & \text{for } \frac{2n+6}{3} \leq i \leq n; \\ f_1(v_{i-1}) + 1, & \text{for } i = n + 1; \\ f_1(v_{i-1}) + (-1)^i(\frac{2n+3}{3} - i(\text{mod } 2)), & \text{for } n + 2 \leq i \leq 2n. \end{cases}
\]

\[
f_1(v_{vi}) = \begin{cases} 1, & \text{for } i = \frac{2n}{3} \text{ and } n + 1 \leq i \leq 2n - 1; \\ 2, & \text{for } \frac{2n+3}{3} \leq i \leq n - 1; \end{cases}
\]

\[
f_1(v_{0vi}) = \begin{cases} \frac{2n-3}{3} + i, & \text{for } 1 \leq i \leq \frac{2n+3}{3}; \\ \left\lceil \frac{4n}{3} \right\rceil, & \text{for } \frac{2n+6}{3} \leq i \leq 2n. \end{cases}
\]

Case 3: For \(n \equiv 1(\text{mod } 3), \ n \geq 4. \)

\[
f_1(v_0) = \left\lfloor \frac{4n}{3} \right\rfloor.
\]
It can be seen that the function f_1 is a map from $V(BF_n) \cup E(BF_n)$ into $\{1, 2, ..., \lceil \frac{4n}{3} \rceil \}$. Therefore, f_1 is a total k_1-labeling with $k_1 = \lceil \frac{4n}{3} \rceil$.

We observe that the weights of the edges are:

$$wt(v_iv_{i+1}) = \begin{cases} 2 + i, & \text{for } 1 \leq i \leq n - 1; \\ 1 + i, & \text{for } n + 1 \leq i \leq 2n - 1. \end{cases}$$

Case 1: For $n \equiv 2(mod\ 3)$, $n \geq 2$.

$$wt(v_0v_i) = \begin{cases} 2n + i, & \text{for } 1 \leq i \leq \frac{2n+5}{3}; \\ wt(v_0v_{i-1}) + (-1)^i(\frac{2n-1}{3} - i(mod\ 2)), & \text{for } \frac{2n+8}{3} \leq i \leq 2n. \end{cases}$$
Case 2: For \(n \equiv 0(\text{mod } 3) \), \(n \geq 3 \) and \(n \) is odd.

\[
\text{wt}(v_0v_i) = \begin{cases}
2n + i, & \text{for } 1 \leq i \leq \frac{2n}{3}; \\
wt(v_0v_{i-1}) + (-1)^{i-1}(\frac{2n-3}{3} + i(\text{mod } 2)), & \text{for } \frac{2n+3}{3} \leq i \leq n; \\
wt(v_0v_{i-1}) + 1, & \text{for } i = n + 1; \\
wt(v_0v_{i-1}) + (-1)^i(\frac{2n+3}{3} - i(\text{mod } 2)), & \text{for } n + 2 \leq i \leq 2n.
\end{cases}
\]

Case 3: For \(n \equiv 1(\text{mod } 3) \), \(n \geq 4 \).

\[
\text{wt}(v_0v_i) = \begin{cases}
2n + i, & \text{for } 1 \leq i \leq \frac{2n}{3}; \\
wt(v_0v_{i-1}) + (-1)^{i-1}(\frac{2n-2}{3} - i(\text{mod } 2)), & \text{for } 6 \leq i \leq 8 \text{ and } n = 4; \\
wt(v_0v_{i-1}) + 1, & \text{for } i = 8 \text{ and } n = 7; \\
wt(v_0v_{i-1}) + (-1)^{i-1}(\frac{2n-5}{3} + i(\text{mod } 2)), & \text{for } 9 \leq i \leq 14 \text{ and } n = 7; \\
wt(v_0v_{i-1}) + 1, & \text{for } \frac{2n+10}{3} \leq i \leq \frac{2n+13}{3} \text{ and } n \geq 10; \\
wt(v_0v_{i-1}) + (-1)^i(\frac{2n-5}{3} - i(\text{mod } 2)), & \text{for } \frac{2n+16}{3} \leq i \leq 2n \text{ and } n \geq 10.
\end{cases}
\]

It can be seen that the weights of edges of \(BF_n \) under the total \(k_1 \)-labeling, \(f_1 \), form consecutive integers from 3 to \(4n \). It means that the weights of all edges are distinct, then we have \(ext{tes}(BF_n) \leq k_1 \). This completes the proof. So, the labeling is an edge irregular total \(k_1 \)-labeling with \(k_1 = \lceil \frac{4n}{3} \rceil \). Therefore, \(ext{tes}(BF_n) = \lceil \frac{4n}{3} \rceil \), for \(n \geq 2 \). \(\square \)

Figure 2 shows an edge irregular total labeling of \(BF_8 \).

![Figure 2. An edge irregular total 11-labeling of BF_8](image-url)
3. Concluding Remark

Furthermore, we conclude this paper with the following open problem for the direction of further research which is still in progress.

Open Problem: Determine the total edge irregularity strength of generalized butterfly graph BF_n for $n \geq 3$ and n is odd. Then, generalized butterfly graph isomorphic with broken fan graph. Broken fan graph is fan graph which divide into n parts for $n = 2$. So, determine the total edge irregularity strength of broken fan graph which divide into n parts for $n \geq 3$.

Acknowledgments

We gratefully acknowledge the support from Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta. Then, we wish to thank the referees for their valuable suggestions and references, which helped to improve the paper.

References