;

Abstrak


Penyelesaian Persamaan Schrödinger Potensial Shape -Invariance Dengan Faktor Sentrifugal Menggunakan Metode Supersimetri Mekanika Kuantum (SUSYQM)


Oleh :
Heti Marini - S911008004 - Sekolah Pascasarjana

Penelitian ini bertujuan untuk menentukan spektrum energi dan fungsi gelombang beberapa potensial shape invariance dengan faktor sentrifugal, yaitu potensial Kratzer, potensial Morse, dan potensial Manning Rosen menggunakan metode Supersimetri Mekanika Kuantum (SUSYQM). Penelitian ini merupakan studi literatur untuk menyelesaikan persamaan Schrödinger potensial Kratzer, potensial Morse, dan potensial Manning Rosen dengan faktor sentrifugal secara analitik. Spektrum energi dan fungsi gelombang diperoleh melalui penyelesaian persamaan Schrödinger menggunakan metode Supersimetri Mekanika Kuantum (SUSYQM), dimana spektrum energi ditentukan dengan menggunakan metode Operator Supersimetri dan metode Kuantisasi Supersimetri-WKB (SWKB), sedangkan Fungsi gelombang ditentukan dengan menggunakan metode Operator Supersimetri. Penentuan spektrum energi dengan metode operator supersimetri dilakukan dengan menggunakan sifat shape invariance, dan penentuan spektrum energi dengan metode kuantisasi SWKB dilakukan dengan menggunakan formula kuantisasi SWKB untuk kondisi simetri yang baik (unbroken symetry). Sedangkan persamaan fungsi gelombang tingkat dasar ditentukan menggunakan sifat dari operator penurun, dan untuk fungsi gelombang tingkat ke-n ditentukan dengan mengoperasikan operator penaik terhadap gelombang dasar. Spektrum energi dari potensial Kratzer, potensial Morse, dan potensial Manning Rosen dengan faktor sentrifugal yang ditentukan dengan menggunakan metode operator supersimetri hasilnya sama dengan spektrum energi dari potensial-potensial tersebut yang ditentukan dengan menggunakan metode SWKB. Spektrum energi dan fungsi gelombang untuk potensial Kratzer dapat ditentukan secara eksak untuk setiap bilangan kuantum orbital l, sedangkan untuk potensial Morse dan potensial Manning Rosen hanya dapat ditentukan secara eksak pada bilangan kuantum orbital l=0, sedangkan untuk bilangan kuantum 𝑙≠0 baik spektrum energi maupun fungsi gelombangnya hanya dapat ditentukan dengan cara pendekatan. Kata Kunci: Persamaan Schrodinger,