Penulis Utama | : | Ruth Andini |
NIM / NIP | : | M0719091 |
Pelayanan kesehatan dan tenaga kesehatan menggunakan singkatan medis untuk berkomunikasi dengan pasien di bidang medis. Seiring bertambahnya jenis penyakit, obat-obatan, dan kemajuan teknologi di bidang medis menyebabkan semakin banyaknya singkatan medis yang seringkali memiliki singkatan yang sama dengan arti yang berbeda. Kesamaan singkatan tersebut menimbulkan ambiguitas yang dapat berakibat fatal bagi pasien. Ambiguitas ini dapat dikurangi dengan menerapkan model pembelajaran mesin. Penelitian ini membandingkan metode Naive Bayes, Long-Short Term Memory (LSTM), dan Support Vector Machine (SVM) berdasarkan akurasi, presisi, recall, dan skor F1 untuk mengurangi keambiguan singkatan medis. Data yang digunakan adalah Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) yang didapatkan dari Kaggle. Preprocessing pada MeDAL dilakukan dengan melakukan wrangling, tokenisasi, dan membagi data menjadi data training dan data testing dengan perbandingan 80%:20%. Selanjutnya, data hasil preprocessing dimodelkan dengan multinomial Naïve Bayes, LSTM, dan SVM. Pada LSTM menggunakan aktivasi sigmoid, aktivasi tanh, dan optimasi Adam. Sementara pada SVM, parameter yang digunakan adalah C, gamma, dan kernel RBF. Akurasi dari ketiga model dibandingkan dan diperoleh nilai tertinggi pada model LSTM, yaitu akurasi 98,78%, presisi 99,11%, recall 98,17%, dan skor F1 98,64%. Hasil penelitian ini ix menunjukkan bahwa model LSTM merupakan model terbaik karena model ini memiliki keunggulan mengklasifikasikan singkatan medis berdasarkan spesialisasinya karena memiliki sel memori untuk menyimpan informasi dan tiga gerbang kontrol yaitu forget gates, input gates, dan output gates.
Penulis Utama | : | Ruth Andini |
Penulis Tambahan | : | - |
NIM / NIP | : | M0719091 |
Tahun | : | 2023 |
Judul | : | Deteksi Ambiguitas Singkatan Medis dengan Metode Naive Bayes, Long-short Term Memory, dan Support Vector Machine |
Edisi | : | |
Imprint | : | Surakarta - Fak. MIPA - 2023 |
Program Studi | : | S-1 Statistika |
Kolasi | : | |
Sumber | : | |
Kata Kunci | : | Singkatan medis, Naïve Bayes, LSTM, SVM |
Jenis Dokumen | : | Skripsi |
ISSN | : | |
ISBN | : | |
Link DOI / Jurnal | : | - |
Status | : | Public |
Pembimbing | : |
1. Drs. Isnandar Slamet, M.Sc., Ph.D. 2. Dr. Irwan Susanto, S.Si., DEA. |
Penguji | : |
1. Dr. Winita Sulandari, S.Si., M.Si. 2. Dra. Yuliana Susanti, M.Si. |
Catatan Umum | : | tidak ada DOI (1) |
Fakultas | : | Fak. MIPA |
Halaman Awal | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
---|---|---|
Halaman Cover | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB I | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB II | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB III | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB IV | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB V | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
BAB Tambahan | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
Daftar Pustaka | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |
Lampiran | : | Harus menjadi member dan login terlebih dahulu untuk bisa download. |