Pendekatan kalkulus variasional pada sistem kontrol daya dorong roket
Penulis Utama
:
Niken Madu Meta
NIM / NIP
:
M0103043
×ABSTRAK
Variational calculus is one of the calculus’ branch that can be used to de-
termine a extrema value of a functional at a domain and or a contraint given.
The function resulted in a extrema value is called extremal. Control system is
a problem found in variasional calculus which can be optimized by choosing the
control vector so that the performance index becomes minimized or maximized.
The aims of the research are to solve the control systems of a rocket thrust
in three cases, namely without air friction, with air friction, and for extremal that
satisfy 0 ≤ u ≤ β(< 2g). The method used in this research is literature study.
Based on discussions, the control systems of rocket thrust in the above three
cases by order are (1) u0(t) = 3(h+gT2
2 )(T−t)
T3 , (2) u0(t) = (h+g[T−1+e−T ])(1−e−(T−t))
T−3
2+2e−T−e−2T
2
,
(3) u0(t) =
β , t < τ
β(T−t)
√T2−2h
, t ≥ τ
, with switch time τ = T −
√T2 − 2h.
Key words: variational calculus, optimal control system, rocket.
×
Penulis Utama
:
Niken Madu Meta
Penulis Tambahan
:
-
NIM / NIP
:
M0103043
Tahun
:
2007
Judul
:
Pendekatan kalkulus variasional pada sistem kontrol daya dorong roket
Edisi
:
Imprint
:
Surakarta - FMIPA - 2007
Program Studi
:
S-1 Matematika
Kolasi
:
Sumber
:
UNS-FMIPA Jur. Matematika-M.0103043-2007
Kata Kunci
:
Jenis Dokumen
:
Skripsi
ISSN
:
ISBN
:
Link DOI / Jurnal
:
-
Status
:
Public
Pembimbing
:
Penguji
:
Catatan Umum
:
Fakultas
:
Fak. MIPA
×
File
:
Harus menjadi member dan login terlebih dahulu untuk bisa download.